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p. 24, sixth line from bottom Read: .... example that there are 8
upper states and 6 lower states and
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p. 25, figure 2-1 Read: w = 8 states

w = 6 statesnU
p. 26, first and second line Read: ....Cmn 6. If finally anyone
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transition to any one of the lower 6
states, C =8 x 6 =48. Thus inmn
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p. 86, seventh line from top .*...eigenfunction, should read:
eigenfunctions ....
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The present monograph is the second volume of the Rocket Radiation J

Handbook series. The unclassified volumes of the series are entitled:

I. ROCKET RADIATION PHENOMENOLOGY AND THEORY

II. MODEL EQUATIONS FOR PHOTON EMISSION RATES AND I
ABSORPTION CROSS-SECTIONS

III. FUNDAMENTALS OF PHOTONICS

IV. GAS DYNAMICS AND FLOW-FIELDS OF ROCKET EXHAUSTS-

V. ATMOSPHERIC PROPERTIES AND OPTICAL TRANSMISSION

VI. RADIATION SENSING SYSTEMS THEORY

Although each volume supports the others and covers a subject that is essential

to rocket radiation science, most volumes stand on their own and their material

can be used in other fields of applied physics and engineering.

The new Rocket Radiation Handbook contains the results of six years

of fundamental research and experimental data analyses of the radiant emissions

produced by rockets as they traverse the atmosphere and travel into space. At

the present level of development, the theory appears to predict most observed

radiations to within the margin of accuracy imposed by uncertainties in the

values of some input parameters and observational conditions.

Some earlier attempts to derive theoretical models for observed

rocket emirsions were rather incomplete and unsatisfactory causing engineers

,In the field to become skeptical of any theoretical work. As a result the
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tendency has been to rely primarily on empirical information and the belief

was held by many that satisfactory analytic expressions derived from theory,
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theory of neutron transport and nuclear chain reactors and designed the first

nuclear reactor entirely from theory without the benefit of any data on an

operating reactor. Their first nuclear reactor, when built, performed almost

exactly according to calculation.

Another interesting example is the laser. Although the basic theory

that could have predicted the principle of the laser existed in 1930, unfamil-

iarity of applied scientists and engineers with this theory, delayed the

discovery of the laser until 1960.
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ABSTRACT

A review is given of model equations for the calculation of photon 1;
emission and absorption cross-sections and rate constants for gaseous mole-
cules in bound-bound transitions. Approximate expressions for electronic,
vibrational, and rotational transitions are discussed and a generalized
line- and band-broadening formulation is employed which allows explicit
calculation of cross-sections and rates at any gas temperature and pressure
as a function of photon frequency. Such approximate model equations are Iiquite useful in the applied sciences such as laser physics and gas radiationsin space and in the atmosphere.

The formulas for the transition elements employed are based on

idealized models of interr, al molecular forces and thus constitute only an
approximation to the exact physical situation. Most of the transition I
element expressions come from well-known derivations given in the literature,
but some new relations for anharmonic vibrational transitions are also pro- mijK vided which have not been previously reported. The derivation of new results
are shown in some detail, but for the derivations of previously-established
relations only references are given. ,

A novel feature presented is the use of generalized broadening
functions applicable to both lines and bands. These functions have often J,been treated unsatisfactorily or incompletely. The new approach to calcu-
lating line- and band-broadening functions is treated in some detail and
relies heavily on the so-called "law of spectroscopic stability" which
essentially invokes conservation of the excitation energy •'at is distributed
over the excited species.

With the first four chapters devoted mostly to a discussion of
theoretical equations, the final chapter presents several explicit worked-
out examples such as the absorption and emission rates of H20 , C02 , CO,
N20 , NO2 N and the stimulated emission cross-section of CO2 as a function of
pressure, temperature, and gas composition.
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I. INTRCOUCTION

In the applied sciences there is a great need for moderately

accurate model equations to calculate photon absorption cross-section and

emission rates in molecular gases that are relatively easy to use but still

contain all parametric dependencies. In particular equations are needed that

give cross-sections and rate parameters explicitly as a function of the photon

frequency v , and the pressure p (or density n) and temperature T of the gas.

Though some approximate model equations have been developed for selected

photon-molecule interactions, generalizations to other molecules have been

rather limited and the emphasis in the literature has been more on spectral

details than on transition strengths. This monograph is an attempt to rem-

edy this situation and to present and generalize in one place madel expres-

sions with which one can calculate pressure- and temperature-dependent

cross-sections and transition rates explicitly as a function of the photon

frequency v . We are primarily considering here photons with energies below

-about 10 eV (frequency v = 2,420 THz = 80,660 cm"1) and above approximately

I0= eV (v 0.0242 THz 0.8066 cm that is those lying in the ultraviolet,

visible, infrared) and radarwave portions of the spectrum,* which can cause

bound-bound transitions in molecules. Only two-quanta interactions are con-

sidered. Bound-free and free-free electronic transitions as well as raman

anQ double-photon interactions) which are essentially three-quanta problems are

not treated here.

*We shall call this region the UVIR region for short.



Q) The model equations presented are those evolved by the author

during several years of research on gas laser physics and gas radiations in

space. The treatment is therefore somewhat biased towards problems in the

latter fields of applied physics, but the material should be sufficiently

general to allow its use in many other areas of physics.

In applied photonics work dealing with the movement of photons

through gases, one repeatedly encounters relations like:

Photon Absorptions Photon Flux

(Unit Volume)(second) (Unit Area)(second)

Absorption

Unit Length of Photon Travel

"where:

Absorption Number of Molecules
x

Unit Length of Photon Travel Unit Volume

Absorption Cross-Section
X Molecule = abs

The basic parameter In such relations for which one seeks values Is

the microscopic absorption cross-section cabs which varies with photon fre-

quency, gas temperature and gas pressure. The precise calculation of Uabs for

a molecule depends in a complicated manner on a molecule's physical makeup

and can only be obtained correctly via the application of quantum mechanics.
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be It is this calculation of a (cm2 ), and the stimulated emission

cross-section as.e. (cm') and molecular emission rate A (secl) of a mol-
S~e. mn

ecule which are simply related to cabs , that form the entire subject of

this monograph. In Chapter 2, these parameters are discussed more fully.

While general microscopic relations governing the emission aiid

""absorption of radiation by molecules are derived In a number of books on

quantum mechanics, details of the broadening of the frequencies of the basic

emission and absorption lines into bands and band series are most often left

to the applied science texts where usually only certain processes are treated

that are of special interest. As a result most broadening widths and shape

functions given in the literature are tailored to particular needs, and the

underlying "law of spectroscopic stability" that governs all broadening

processes is often obscured.

A novel feature in the present monograph is a unified treatment

of all molecular broadening processes. This unified treatment can be applied

to individual lines as well as bands and always ensures that conservation of

energy and conservation of number-of-excited-species is obeyed. Although

the basic features of the line-broadening functions and line-widths that

are obtained are not new, the expressions that are derived for the contours

of "rotationally broadened" vibrational transition bands and "vibrationally

broadened" electronic transition band-systems are new in that they appear

more convenient and of general use than what has been presented before in

the literature. The approach of treating all broadening processes in one

unified manner has proven to be very useful for gaseous laser processes and

gas cloud radiation problems.

3



.T1.

To illustrate our approach, consider radiative transltions*

between two different excited states of a molecule. The first state might

be designated by (J' v' , A') and the second state by (J" , v" A A").,

where J' is the rotational quantum number of the first state, v' represents

the vibrational level of the first state and A' symbolizes the first state's

electronic quantum state+*, while doubly primed parameters indicate similar

characteristics for the second state. '4

In general a transition from the single primed state to the double

primed state can involve situations where v' > v', while J" < J' and A", A, j
or A" > A' with v/ < v' and J < J', or any other combination. The rela-

tions between v" and v', J" and J', and A' and A" are not completely

arbitrary however but subject to certain constraints and selection rules,

which we shall discuss in Chapters 2 through 4. That is we have in general

that v' = v"(v'), J/ = J"(J'), A"/ A"(A

Of course vibrational transitions can take place only for

multi-atomic molecules in gases, liquids, or solids*'*, since a minimum of

two charged atomic partners are needed for a vibrationally-excitable bond.

*In what follows we shall use the word "transition" to mean "radiative

transition" only, that is a transition involving a massless photon and a
molecule. Transitions induced by a collision of a molecule with an electron
or other molecule, that is "collisional" or "impact" transitions follow
different rules and are not considered In this monograph.

**The electronic energy state Is actually specified by three quantum
numbers of course, namely the "principal," the "orbital" and the "spin"
quantum numbers.

***In th's monograph emphasis is placed on molecular transitions in gases.

However many of the relations given are directly applicable or may be
extended to liquids and solids.
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5) Similarly rotational transitions require an axis of rotation between at least

two separated, charged, atomic mass centers and thus only in multi-atomic V

gases and liquids do rotaticnal transitions play a role. A monatomic gas 11

such as Helium or Neon can only experience purely electronic transitions (as

long as conditions are such that the molecules He• or Ne* cannot exist).

One glance at typical emisions from electronic, vib,ational, and

rotational transitions in a molecule, reveals that energy (or frequency) dif-

ferences AEe between electronic level: are an crder of magnitude larger than

typical differences between vibrational levels AEv , and the latter are again :0

much larger than the energy changes in rotational transitions AE . That is:
r

U4
AE >> AE>> ( 1. 1)

e v r

or since the emission frequency v = AE/h

(Vmn)e >> (Vmn)v >> (Vmn)r (1.2)

One also finds that in general the mean time T for decay of an

excited state is the shortest for the most energetic transitions and longest

for the least energetic ones, that is:

T << T « Tr 13e V r

Typical order-of-magnitude vailues for the above Farameters are: s

1~ -3

AE 0 eV ; (Vmn)e 100 THz gj 1,000 cm- T 10 sec
i•AE 0.eV' Vm) 0. 1 THz• 1 cm'l10saem)Tr o r ; r I0 sec
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From this order-of-magnitude analysis it appears that we can

treat the rotational transition that accompanies a pure vibrational

transition (electronic state remains unchanged) as a perturbation, and

similarly the simultaneous vibrational (and rotational) transition that

may accompany an electronic transition can be considered as a small

disturbance of a much larger change in electronic-state energy.

In the following, we shall employ the symbols m and n to

indicate upper and lower quantum levels respectively. That is the state A

m possesses more internally stored molecular energy ("upper" state)

than the state n ("lower" state). When considering a transition which

is primarily electronic we then have an upper electronic level specified

by the three-set (nm Am D m which we shall usually abbreviate A,

and for the lower level we have the three-set (n j An C n) which we

abbreviate An. We shall consider Am and A to be fixed in this case,
n m n

while the vibrational and rotational quantum numbers v and J , and vm m n

and J can have various integral values though as remarked earlier,n

restrictions are placed on v and J by the selection rules,, that isn n

vn = Vn (m) and Jn = m

*An electronic level k is specified by three quantum numbers, a principle
one nk , an orbital one Ak I and a spin number Ek * Instead of Ek •
usually one specifies the total angular momentum quantum number

Ok k + kH

**For polyatomic molecules it is often necessary to specify two quantum
numbers J and K to specify a rotational level. In this case Jk - (J kKk)
(see section 3.4).

6
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4

U For a transition that is primarily vibrational (i.e., A= A n),

the levels vm and v are specified, while J and J = J(J) can have

various values. Finally for a pure rotational transition for which Am = An

and vm = vn , we have one particular value J and one particular value

n n mJn=Jn('Jm>"

To clarify this notation further, for example An is the symbol
mn
elc

for the spontaneous deexcitation rate of a molecule from a particular upper

electronic level m = A to a particular lower electronic level n = A form n

any accomnp~nying values of v v and J - J that can exist and areanyacomanin vlus f m n m n

allowed. Since the transition rate An is, to first-order, only deter-
mn
elc

mined by the change in electronic energy AE = h(vmn) , its value is
e de

the same whether we start out with vm = 5 J = 136 or vm = 2, Jm = 25.
m

NJ The frequency v of the photons emitted in the electronic m - n

transition under discussion, is to first-order given by v = (Vmn) AEe/h.
e e•

However because of the various possible vibrational sublevels v and their
m

transition to vn = vn(vm) during the electronic transition Am -4An ) the

actually emitted photon frequencies v will vary within a small range about
AE ± AE

the central value Vn That is, v v(v v(v) e v
mn m n m h mn

(V - v (v)) V V (v where v is fixed, and where the variablevm vn M mn- •v Vm) whr mn

A'v (Av << Vmn) can take on any one value of a range of possible discrete

values determined by the selection rules and other transitional constraints

to be discussed in detail later.

As stated above, the rate A0  for an individual molecule is
mn
elc

constant and independent of vm and thus also independent of the emission

." 7
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perturbation frequency Av That is if we removed each molecule excited© v
to the electronic level m from the gas and observed its decay to level n

in isolation, we would find that the decay rate would be to first-order

the same for each one, regardless of the initial value for v and J andm m

the precise value v of the emitted photon.

However, in a gas at thermal equilibrium, the population of

molecules excited to rn Am with v = 5 is (usually) less than that of

A excited molecules with v 2. As a result of-this difference inAm ectdmeceswtvm •.

population of initial vibrational sublevels, we will therefore find that

the apparent value A for a gas molecule does depend on v or Av (Vm).
mn m v melc

Since a particular lower sublevel v is specified for each v via certain

selection rules, the variation in the apparent value A with the emit-

ted photon frequency v is directly related to the population distribution

(, ) of states vm . If we define the population distribution of sublevels v

giving rise to emission of photons with frequencies in the range v 1 1/2 dv

by:

I dN(vm)

N dv -(m) = g(v(v . vn(vm))) g(vvmn, ) Hz1m "mtot
(1.4)

where N is the total number of excited states m: then:
m~0mtot ,

*In this case tiie selection rule is the "Franck-Condon Principle" (see
Chapter 4).

8
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dA dN(v)
-- =A g(•VmnAV sec Hz")

dv mn N dv mn mn e(
-,• in~~to t 

t°:i j'
The quantity Atv which we shall discuss in Chapter 4, is a

measure of the average spread or "width" of the emitted photon frequen-

cies about the central frequency v mn over which the variable Avv will

range. The magnitude of Av for the electronic transition m n is
mn

on the order of the value (IE. - E +11)/h but its exact" EV =V-I)/ btit exc.
m n m

value-requires a more detailed analysis of the constraints imposed on

.9 v v transitions when A "A

In the example above we considered an electronic transition

(m = Am) -. (n = An) ,but the same can be said for a pure (Am = An)

vibrational transition (m = v) (n = vn) in which the rotational sub-

levels cause a spreading of the emitted photon frequencies about v
mn

Equation (1.5) applies therefore in general to both electronic and vibra-

tional transitions and for that reason we have omitted subscripts "elc"

or "vib" in it.

In fact, Eq. (I.5) can be applied to any frequency-spreading

or "broadening" process, in which the basic transition energy quantum

hv is slightly modified by another simultaneously-occurring process

v', ,.-..v,, .

:x: •F,';.-'.•-• :v•:5••~~~~~~~. . . .:.• ,: .. ./• ••'• .. .'..:. ; .. •,,.:. . . . .. . . . . C.
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involving exchanges of smaller energy quanta, such as "collision-broadening,"

"doppler-broadening" and "stark-broadenlng" effects which we shall discuss

in Chapter 4.

If we integrate Eq. (1.5) over all emitted photon frequencies v

from the m n transition, we find that:

V C

Ndv = (vmn AVmn) dv (1.6)
mtot fg

4=0 V=O

Thus the distribution functions g(Vmn •AVmn) of a broadening

process must always be normalized to I to ensure that the law of conservation

of the total number of excited states and emitted photons is obeyed. Spectros-

copists will recognize that Eq. (1.6) expresses nothing but the so-called

"law of spectroscopic stability" which states that an integration over -he

frequencies of an absorption or emission line or band must be constant

regardless of how the line is broadened, provided that the energy supply

rate is constant of course. The exact shape of the function g(V,V1m1A Vmn)

depends naturally on the particuiar broadening process that is in effect.

It will bes the subject of Chapter 4.

In Eq. (1.5), A or dA i/dv depends explicitly on v . The

function g(vv mn Jvinn) contains all variations due to variations in

the frequency v while Ae depends only on v . Let us compare this general
mn n

form to the result which quantum mechanics usually yields for the

10
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transition probability. For a transition ( An A Vm v m

quantum mechanics gives (see Refs. I and 2):

64 Trr'e 2v3  S [
"mn -IA(A A)= 3hc 3  sec 1.7)*

Jm n

where for an electric-dipole transition between electronic levels m-. n

(i.e., A in

2

mnn r etc; *Vm dT"S,.)ec,1: IN *:~v n n Mm Jm I

2 2

n drf dr

i,k k li,k k

we(A) Wv) Wr(J)
n m m

t2

S JVAn etc *A
i kk

Cetc ocvib ocrot
mn mn mn c 2 (2.8)=~~ ... . n cm2

w e(A) m wv(vm) wr(JM) emc
9 m mi e

*We prefer to remove the factor e2 from the definition for the "strength"

Smn I Thus our "strength" is in units of cm2 instead of erg - cm3 employed
by many others who use d e 2 sS Smn •



Herethe electronic transition matrix element R2  Is defined by:
mnf
e1c

2

R2 = R2 (A )A-) re 4c dT , cm2 , (1.9)

mn mn m n) flelc elc Mi l J " k'
reference

and the nondimensional "connection factors" n Ce C anvib d oC are

and he in mn mnae

formally given by:

inm in md 2 (nk1.10)Am d

f4An-r in.

reference

2
ocVibn o..vIbV,mn•Vm' Vn AmA) = in /rd'r Cl.l H)

i i m i

2

ocrot ce= (Arot A n) ipk 2z ;v, (1~df. 12)

*A r~ enn Am n n d T n

122

0 vib ocv- 'A



3 The "weighting" factors or "degeneracies" we • wv • and wr
m m m

in Eq. (1.8) are equal to the number of substates of exactly equal energy

for respectively the electronic energy level Am , the vibrational sub-

mlevel vm , and the rotational sublevel Jm . The summations in Eqs. (1.10).

(1.11), and (1.12) are over the allowed transitions (for which the integral

f t* dT ý 0) between degenerate substates i of the level m and degen-mn

erate substates k of the level n for respectively electronic, vibrational,

and rotational levels. These degeneracies arise because of "space

quantization." That is, not only the energy of the levels are quantized,

but also the directions of the rotation vectors of orbital and spin quantum

numbers of both electrons and molecules as a whole are quantized. Thus

for a given energy level specified by a given quantum number(s), several

substates or degeneracies can exist of equal energy but different spatial

orientations of orbital or spin angular momentum vectors. Also for bending

vibrations for example one can have a spatial degeneracy due to two

possible identical bending vibrations in two mutually perpendicular planes. A

Up to now we have used the words "levels," "sublevels," "states",

and "substates" somewhat loosely. Following Condon and Shortley (Ref. I)

however, we shall from now on use tho word "level" to indicate c partic-

ular energy level of a molecule, while a "state" of a molecule refers to

a quantized energy level and a quantized orientation of the angular momen-

tum. Thus a level can have various equally energetic states. We shall

further call the electronic levels the "levels," and the vibrational and

rotational levels the "sublevels," when we consider electronic transitions.

For purely vibrational transitions, the vibrational energy levels are the

13



"levels" and the rc-,tional energy levels are the "sublevels)" while for

purely rotational transitions the rotational levels are the "levels."

Each level and sublevel can have states and substates of equal energy of

course.

For a vibrational electric-dipole transition with no electronic

level change (i.e., Am = An)• the "strength"t Stn in Eq. (1.7) is similarly

to Eq. (1.8)) given by:

tt t t 
2 ~

(S) Ib IffJ nn Vn I'Am Vm d'm

2 2

ik k di] vk

W(vVm Wr (Jm

m mi

o Crot cvib
min mn R2  CM 1

wv(Vm) W(J) bm
m r m

where °Crotm oCrot(JmJ ;v v ;A =A ) is again given by the expression (1.12)mn m n M n in n iM n

except that the dependencies on A and A must be set so that A = A . Them 11

factor Cvlb and the non-degenerate transition matrix R2  are formally givenmn mn
by: vib

*In addition to the above definition, the word "state" is also used to indicate
a general combination of an electronic, vibrational) and rotational level.
Thoug. perhaps confusing, it Is usually clear from the context which meaning
applies.

In



"42' R2 =R2n(vm vn;Am=An r dr c1.4

vib vib V -4k'

reference

anid:

f ~ * ¶V d'r

n n.
~ =v , w getthat

rot Jn nn mnn

w(Jr wrT

whereenc

Finll, ora ur rtaioalelctrc-ipletrnstin it A A a5

n



R2© 2 (JmJjn;A =An;v = f *k r dr CM2
m mnrmnMnMni rot *j d m
rot rot • kl J i t k'

reference

t 2'd

f~2 n f4 rrot M dr

trot = rot,( )Jn;V =V;AmA) = k(1)mn nn i n n 2m
n rrot Mi j dk

reference

Rewriting Eq. (1.7) for electronic transitions in the form:

64 _2i 3• / V elc 3oCvib o0rotn mn mn , .
inn ( n - R2 in=(An A) 3hc5  \WA we!T m w (v) w (J)

v• - vn exc v m rm
m 

eJnci,

elc

AVlb/rt photons/sec

in mnn Molecule (A , Jm) (
elc mm in

where:
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vocvib ocrot
Vib/rot mn mnmn Wv(v) w(J)

m m

64 n~ 2 3  lc~c fK
A° =mn mn 2•

mnwemnm , sec (1.2 )
3hc3  WA! ~Helc mhc elc

we have essentially separated it into a factor Anthat depends only on vra
mn melc

and a factor P b/rot that depends only on the vibrational and rotationalmn

parameters. We can of course write expressions similar to (1.19) through

(1.21) for pure vibrational and pure rotational transitions.

( owte ato vib/rotJ
mNow the factor Fv, which we shall discuss in sections 4.7

and 4.8, is the probability for a transition from one particular sublevel v

and sublevel J of the electronic level m = A to any one equi-ehergetic
m m

(degenerate) sublevel v and sublevel J of the electronic level n A
n n n

for a given molecule with v , Jin Thus the expression for A given bym In mnelc
(1.19) applies to very particular molecules, namely only those that are at

energy level (Am:VmJm). In actual practice we wish to know the emission

rate A for molecules in a gas of which we only know that they ai- excitedInn
elc

to the electronic level Am , but for which the sublevels vm and Jm can have

a variety of possible values. Similarly we wish to know in practical appli-

cations what Amn Is for molecules in a gas of which we only know that they

vib
are excited to a particular vibrational level vm , but for which Jm can vary

from v -excited molecule to v -excited molecule. Finally it Is of interestm m

17



to determine what A is for molecules excited to a particular rotational
mn
rot

level Jm, but whose translational kinetic energy can have different values

from J -excited molecule to J m-excited molecule.

Now in a gas of diatomic or linear molecules in thermodynamic

equilibrium in which electronic excitations occur, we find from statistical

mechar.ics that the probability of finding a molecule at sublevels (Vm Jm) is

(Ref. 2):

N m N m [w~ exp-[ v V(hc/kT~j1• (v m, JM) N(Am)V m JM) = vm M

vf.i N to N A-Z
fm• m Ntot NAm [ J

i

w exp-[J(J+0vB(hc/kT)
f (1.22)Zr m m

r

Equation (1.22) states that z'f Z'l the molecules Ntot in the gas, a fraction 4

f is at excited levels (V, J). Thus also of the A-electronically
fVm ýJm m M_:

excited molecules N Am N a fraction fV J is at sublevels (v mJM).

Z and Z in Eq. (1.22) are normalization factors (see Chapter 4) which arev r

respectively called the rotational and vibrational "partition functions."

For nonlinear molecules, the function f is somewhat different from

Eq. (1.22) but similar (see Chapter 4).

For an equilibrium gas of linear molecules then we have for

electronic transitions:

FVib/rot = A0  Gelc photons/sec
A m A =n mn mn v ,J mn mn molecule (AM)elc m m elc

m n-
(JM jn)

18



where:

[w exp- (vvhc/(kT wexJ(J+i)vhc/(kT)]
Gelc Fvib/rot n CY~ , L n t~/ (1.24]]
mn mn Z Z

V- r

In the same manner we have for vibrational transitions (no electronic

changes) : ,
changes: A =AOFrot f 0 =A0  GVib photons/sec (.5

vmn i v ) tn mn J mn mn in molecule (vm)
vib elc

M 'n

where:

exp- J (J +)v hC/(kT)
Gvib : Frot (2Jm+1) (1.26)mn mn Z m "

r
r j\ -,__

0n -orot

F ot r ,innio. rot mn TA

F. (1.27)mn Wr

We use the superscripts elc and vib on G to indicate that the function G

mn inn

applies to the case that an electronic and a vibrational transition respectively

elc
is the primary inteenal-molecular change. Of course G contains all the fine-

inn

structure dependencies on the vibrational/rotational sublevels and similarly

-Gvib contains all the dependence on the rotational fine-structure. 4
ninn

Equation (1.23) (and similarly Eq. (1.25)) is an improvement over (1.19)

since ki applietý to ar-bitrary Am-excited molecules and gives automaticaily

the finer-detailed transition rates for different rotational sublevels J
im

H l owever it is still awkward to use since in applied phy/sics problems it Is

desirable to have the expression for the rate A entirely in terms of the
imn

19



photon frequency v , while (1.23) (and similarly (1.25)) still require

auxiliary equations that relate J and v . For exampie for electronic
m

transition the photon frequency v is related to Jm Vm Jn • Vn by:

r 1 0 vib1

m n

w(J)t [VJm(Jm) V ](J)

V~ ~ [Vjt mn (An]-mI ) I vj m (VJm) =- n( M

m

ocVib oCrOt

-- vm(Am;An ~ 2)-+v v) ±n mnJ A~(m (1.28)

n m

IV V V J Om

M IN

r m m m n
certain transition rules which we shall discuss in Chapter 4, and and

m mare the "Boltzmann factors" for the vibrational and rotational levels (see

Eq. (1.22)).

To carry out the program of rewriting c in terms of v instead of

mn

•, 'o m J we assume that V is continuous and that the discrete vibrationalm n
um er we a ssumeo t hatio a num es co t nu u an d tha "sm ear d iscrt. We viba dot hiona

IT m

^e lc :v n d G i b j m a s f l o :
Sin Chapter 4 where we essentially rewrite Gm aVm d mn( a olos

G mc(Vm) probability at level vm

( (lc(, )(/ ) pbbiytqdvm
9" e(V) (Gmn[ d- probability at frequency v per unit dv (1.29)

•,!!•20



GVib(j) , probability at level J

mn m m

gv (G)b=VG)n m) M , probability at frequency v per unit dv (1.30)

The dimensions of g(v) and gv(v) are Hz', and when used in (1.25), this means

that A - dA/dv. We shali see in Chapter 4 that the expressions for the band-

contour functions 9e and g9v always have vmn and AVmn as parameters, where Avmn

gives the average width of the band and where for electronic transitions v =mn

v(A) - v(A) and for vibrational transitions vmn = v( V) - v(v). Thus we

shall often write g (V'V mnAvn) and 9v(V'V AVm) to indicate the three keye mn'mn v mn mn

parameters on which 9e or g depends.

Before concluding this chapter, a few remarks concerning Eqs. (1.8),

(1.12), and (1.16) are in order. The approximation signs used in these expres-

sions indicate that all second-order mutual interactions between electronic,

vibrational, and rotational forces are neglected. The"4A , V J are of

course the electronic, vibrational, and rotational eigenfunctions of state k,

while *A * are their complex conjugates.

Though the relations presented above appear rather formidable, they

. only look involved because of the formalistic manner in which equations in

quantum mechanics are most conveniently expressed. We write them out in detail

here only to show precisely how our approach is related to the expressions that

appear in quantum mechanical treatments.

For applied physics work, it is sufficiunt to remember that the decay

rate of a molecular excited state can always be written in the general form:

dAmn Ao 64 17 e v3  ICmn \
"mn n go(V"v nAV ) (mn mnR2 go(VV mAv), sec" Hz-I

dv mn 9 mn mn 3hco3 ( /) mn/o mnmn

(1.31)
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1 where only the broadening function go(V'vmntV mn) depends on v and the remaining

factors only depend on v and are independent of v. The subscript o in

Eq. (1.31) refers to an electronic, vibrational, or rotational transition what-

ever the case may be. For a pure rotational transition, 9r(V)V nAVm) is the

temperature or pressure-broadened line-contour function due to the translational A

molecular perturbations on the rotational transition.

In any particular problem, four parameters must be determlned, namely

R2 Cmn W (or w), and the function g(vvmnVmn). In the succeeding

chapters we shall provide explicit expressions for these parameters. A review

of the formal relations for cross-sections and rates derivable from the quantum

theory of radiation is given in Chapter 2, while in Chapter 3, we give specific

model expressions for the factors R2 
, Cm • wm , and wn for electronic,

vibrational, and rotational transitions. Chapter 4 covers broadening functions

"g(V'mV AV) for all the possible transitions.
mn mn

After presenting detailed derivations in Chapters 3 and 4, summaries

of the key expressions needed in most practical work are given in Chapter 5

in tabular form. Some practical examples are also worked out in Chapter 5,

such as the stimulated emission cross-section for CO2 in a He-N 2-CO2 laser gas

mixture and the emission rate (decay constant) for H 0 in a gaseous cloud. A
2

nomenclature list and a list of the references are given at the end of the

monograph.

Only one photon (one frequency v) interactions are considered in

this monograph. The extension of our review to (the much weaker) two-photon

interactions involving two frequencies vI and v (raman radiation, double

absorption, etc.) will be left to a future effort.

22



2. GENERAL FORMULAS FOR DEEXCITATION RATES (LIFETIMES),
PHOTON ABSORPTION CROSS-SECTIONS, AND CROSS-SECTIONS

FOR PHOTON STIMULATED DEEXCITATION

2.1 PRELIMINARY CONSIDERATIONS

In this chapter we give for ready reference the general forms

of the emission/absorption equations whose derivations are treated in

most standard textbooks on quantum mechanics. We can divide first-order

photon-molecule interactions into three groups; namely (I) spontaneous

emission, (2) absorption, and (3) stimulated emission, and in the next

three sections the general formulas are presented that are usually

needed in applied physics work for these processes.

We use standard accepted symbols wherever possible, but for

purposes of greater clarity we have introduced some new ones which reflect

our general approach for treating broadening effects. The nomenclature

is listed at the end of this monograph.

Besides some fundamental constants, we have seen that the

general expressions for transitions between levels m and n contain four

key factors, namely a transition element R2 
, a connection factor CmY mn

a weighting factor wm or wn , and a broadening function go(V'Vmn AVmn.

In Chapter 3 we shall give explicit model expressions for transition

elements R mn ' connection factors Cmn and weighting factors wn wm for

electronic, vibrational, and rotational transitions, while in Chapter 4,

23
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S we consider explicit model equations for the broadening functions

gVvmn AVmn

In any particular application, the procedure is to determine

first which general expression(s) in Chapter 2 is needed, secondly the

appropriate expressions for R2  
, C and the weighting factors w , w

mn mn m n

are obtained from Chapter 3, and finally the proper broadening function(s)

o(VV)AVm is selected from Chapter 4.

The matrix element R2  (units of cm2 for dipole transitions)mn

gives the strength of an allowed transition between one reference upper

state and one reference lower state of the. possibly multiple number of

equi-energetic states wm in the upper level m and possibly multiple

number of equi-energetic states w in the lower level n. The reference
n

transition is usually defined to be the most probable one if there is a

difference in the connection probability of allowed transitions between

the wm and w states.

The dimensionless connection factor C as defined in Chapter I,

mn

gives the total weighted number of allowed transitions between the wm

upper states and the w lower states. Referring to Figure 2-I, suppose forn

example that there are 7 upper states and 5 lower states and that only

transitions as Indicated by the solid lines are allowed. From the figure,

it is clear that there are 12 such transitions, and thus C = 12 if eachmn

transition is equally allowed. If in addition to the solid lines, the

transitions indicated by the dotted lines would also be allowed, we would

have on the other hand C = 18. Or if only the dotted lines are allowed,

mn
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Smn= 5. If finally any one of the upper 7 states could make a transition

to any one of the lower 5 states, C = 7 x 5 = 35. Thus in general many
mn

possibilities can exist depending on the exact selection rules.

Whether or not two states, say w = k and w j are connected
m m n n

depends on whether the integral r dr is zero or nonzero. It
j~km nr

is possible that the allowed transitions between states are not equally

probable. For example let transitions between say state km and jn be three

times more probable than two other allowed transitions from k to say states
m

P and q In that case the transitions are weighted (k jn) I,

(km Pn 1/3, and (km q = 1/3, if the calculation of the transition

element R2  is based on the strongest (most allowed) transition k - Jmn m n

between levels m and n. If in this case there is only one upper state km

and three lower states (n Pn q n) then C = I + 1/3 + 1/3 = 5/3.Smn

The reasons why R2 and C are usually calculated separately ismn mn

that the sL'snmation calculation C over allowed transitions between states
mn

can be done by a rather general mathematical methodology called "group

theory," while the calculation of R2 can be done by other convenient math-mn

ematical approximations. In group theory there is no need for a complete

determination of the wave functions *k and 'J to calculate Cmn and only
m m

the spatial symnetries of the quantum states m and n need to be known.

An important result from quantum mechanics is that the strength

S Is symmetric. That is:

S =s (2.S
mn nm

S~26
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Since we defined R2  to be a reference transition element between two

mn

(9 particular states, we have also:

R2  = R (2.2)
mn nm

and therefore since S = R2  and S = C R2  we m'st have:
mn mn mn nm nm nm wi

C =C (2.3)mn nm

Now the transition parameters such as the decay constant An

must be specified on a per molecule basis, and since a single molecule

can only he in one of the possible w upper states, the strength Sm mn

( ) should be divided by w to give the average strength per molecule. This

is the reason why we find the factor (S mn/W ) in expressions for Amn

such as Eq. (1.7).

In the following subsections we shall present without further

explanation the standard expressions for the spontaneous emission rate

A (sec-), the stimulated emission cross-section a (cm 2 ) and themn mn !

absorption cross-section a (cm 2 ). These three parameters, as will benm.i

shown, are interrelaLed of course. The reason for using cross-section a

as the basic parameter for the latter two processes instead ot a rate

parameter A, is that the former is independent of photon population

while interaction rates are dependent on the photon fluence F . The

product F ay or i(dF /dv):dv gives of course the rate.

27
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(3 ~ 2.2 SPONTANEOUS PHOTON EMISSIONS

The spontaneous deexcitation rate* An or inverse decay constant

T mn for a transition from level mn to n may in general be expressed by

(Refs. I through 9):

64 TT e V3  2
A AII*n
mn-,; mnn inn 3hc 3  mn

64 rr'e v3  S
sec (2.4)

3hC 3  WA

where for an electric-dipole transition, the strength Sm is formally defined

by (Ref. 1):

S =C R= N' f r *, d'r cm 2  (2.5)
mn innmn p n mn

i,kk

*Also called the "Einstein A-Coefficient;" the subscript mn shall mean
m -. n in all the following.

4~*Note CR 2 /w I? 2 = 2 4 ly 2 + 11 1 211

mnm n mn mnn mnn imnI IXmnI2 lYmn
=3 1Z , 2 

,for an isotropic homogeneous medium (Ref. 3, p. 405).

28



and the other parameters are defined in the nomenclature list. Equation

(2.4) applies to any transition, whether electronic, vibrational, or

rotational. Basic differences between these processes will appear in the

parameter S /w

Now as shown in Chapter I (see Eq. (1.23)), we can write Eq. (2.4)

in the form:

A =40 G , sec- (2.6)
imn mn mnn

or:

dA(")mn _A? se- H-I(.7dv mn go(VV) sec Hz

Here Gmn or gin contains all the emission rate frequency dependencies due to

broadening perturbations from the intaraction of vibrational and/or rota-

tional sublevels on electronic or vibrational levels during a transition,

while the parameter A0  depends only on v . That is Am is equal to

Eq. (2.4) with the matrix element in (2.5) evaluated for the unbroadened,

unperturbed, transition m - n as discussed in Chapter I. In other words

m = m(Am) and n = n(An) for an electronic transition, m = m(vm) and

n = n(vn) for a vibrational transition, and m = m(J m), n = n(Jn) for a

rotational transition.
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Using the results of Chapter I, we can write:

202
64 TrreY v(S 64 rr4ev3  (C R' sJ

m mn mn mn mn se

mn T 3hc3. m 3hc 3  0m'

mn

(2.8)

where for an electronic electric-dipole (E.D.) transition:

2

E.D. E.D. E D. ijk k

(2.9)

while for a vibrational electric-dipole transition:

S~2

(S) (S) (C) (R) r *A dT , 2

E.D. E.D. E.D. i,k i

(2.90)

and for a rotational electric-dipole transition:

( =n~ (smn) (Cmn (R~mn)E?) n_ *Jm d¶ 2

E.D. E.D. E.D. i k i k

(2.11)

Since most transitions of interest are of the electric-dipole type, we

shall omit the subscript E.D. from hereon, and only label parameters with

M.D. (Magnetic Dipole) and E.Q. (Electric Quadrupole)) if an E.D.

transition is not under consideration.
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(I If an E.D.-type transition Is not allowed, the next possibly

allowed radiative transitions are the much weaker magnetic dipole (M.D.)

and/or electric quadrupole (E.Q.) type of single-photon transitions, *nd

two-photon transitions. M.D. and E.Q. transitions are often also called

"first-order forbidden" or simply "forbidden" transitions.

We shall not discuss second-order two-photon transitions here,

but for completeness, we give the expressions for (Smn)o for M.D. and E.Q.

transitions (Ref. 1), which must be used in Eq. (2.8) in place of the E.D.
expressions (2.9) through (2.11):

2I

IS\ 2  ~ ! (r x ) ir dT( )\m/ 0 16 rr'mc 2  n. IJ
M.D. ,k k

- ( )C (R2 ) , cm2 R (2.12a)

M.D. M.Do

where:

2

= 
2 64~( x ~)~ d' Cm2

(Rj 16 TTYOmn 0
M.D. n

(2. 12b)

and:

3'
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© 11
3 IT2v 2

-

Stn o = 00 0'
)o. 10 jk im dk

SC) (R) cm2  132.Ia)

E.Q. E.Q.

where:

2

(R~,n1 = 3~r (rr) ~ d cm (2. 13b)
R2x k T

E.Q.m

(:9
Here (r ) in Eq. (2.13) is a dyadic. As hefore, the subscripts o = elc - A

o = vib v , or o rot- J , whatever applies.

In Chapter 3 we give explicit expressions for (Cmn)o and (Rmn)o

here we shall simply assume that (Smn)o = (Cmn)o (R 2)o is known. As

mentioned, (Smn)o depends only on the central frequency v

The transition probability pmn (v) that the emitted photon has a

frequency v in the range v ± dv close to the resonant central frequency

V may be defined formally by:
mn

dpn(V) b(,v n'Av

Smn mn Hz- (2.14)

dvj AV mn
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where the "spread" Av Is a constant, and the "shape function"

b(vvmn•vm) will be discussed more fully In Chapter 4. Then themn mn

average rate for the emission of photons of frequency v close to the

transition frequency v for a "broadened" tran3ltion m n can berion

wrItten:

dn ___n_ __ mn__Amn____

dA (v) b(VV mn ) -; -,
-= sec Hz (2A15)
dv mn dv mn AVc(

mn

Comparing Eq. (2.15) with (2.7), we see that we must have that:

•di b(v,yVn AVmnmn _n __ _ _ __ _ _

..dm(V) _mn~v) -- = 9(V•Vmn AVm) , Hz" (2. 16)
dv mnmnmni

Thus another way of looking at the broadening function c(VVrnn, AVmn) is

to consider it to be the probability distribution of emitted photons to

have a frequency v in the vicinity of the central frequency v . Wemn

shall make use of relation (2.16) in Chapter 4 where we will evaluate 4

g(v,vmAVm) for specific cases by inverting G as discussed in Chapter I.mn mn mn

Because of Eq. (1.6), no e that the shape function b(v~v Avm )

and the spread Av are so defined that:
mn

3Si



.f (VVnAn) dv =(I J v dv 1 (2. 17a)

\J0 v 0

or since Av is a constant:
mn

b~~ nA ndv Av ,nHz (2.17b)5

v=0

As mentioned in Chapter 1, Eq. (2.17) expresses the so-called "law of

spectroscopic stability" (Ref. 10). This law is also expressed by combining

(2. 15) and (2. 17) in the relation:

dAv) dv = 
0 (Vmn sec- (2.18)

=0

Summarizing cuur results for spontaneous photon emission, the general

expression for thp deexcitation rate is:
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dA 64 TTr'e~v Smn mn mn

= 3hc3  vv, )=

mn g~~vmv2.6833 x &10 V 3  (R ,, A sec- Hzmn Rmn)o o10 mn mn
K(HzP) (cm) w o (Hz-1)

(.19)

where the subscript o must indicate whether the main transition is

electronic, vibrational, or rotational, that is o =elc ,o vib ,or

o rot.

V
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2.3 PH4OTON ABSORPTION

Theabsrpton ros-section a~ (M is related to the spontaneous
as

deexcitation raite A0 and the broadening function go(Vmn'VIAVmn by the
mn0 n m

equivalent relations (Refs. I through 9):

on~)=Xi (w dA X2 ) dp M)

onmv) m mn(V I oVnVVm ) = n

abs nh

I onm(v) 0A96 V (CVn IVn, A Vvv)cm

mnm

to~~~~~~~~~ aT elec of phtn V)woefeucisaedrbe vra

mn36
prm 9( nVA n

nm~v) 3hc



range of values that cover the resonance width AVmn in the region

v + I is related to VA and a by:
mn 2 n mn 2 A\mn t mn nm

abs

fj dFq, ' d•

nm 0d- anm(v) dv
abs

•=0

mn mn

8 TTe mn Cmn 1 (R2 / "

n) 3hc \w , mn ,i dv/,vnmn

K = 0.0960 V 2n) (R sec

nm mn(Hz) Wn "R mn)/ dv ,s"I *

0 (c2) mV (Hz)

(2.21)

The omnidirectional photon flux or "fluence" is in units of

photons cm -2  sec 1 and is related to the photon density by:*

F ( n (v) c/I p-2hotons (2.22)
crA2 sec

*We use the symbol F for fluence and the subscript cp to indicate we are

dealing with photons. The molecular fluence would be designated by Fm
the electron fluence by Fe , etc. The word "flux" is often used
instead of "fluence" in the older literature.
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4'W

where n (pv) is the density (cm) of photons of frequency v c is the

velocity of light (= 2.99793 x I010 cm/sec), and ¶] is the refractive

index of the gas.

In a cavity, where the photon field is in equilibrium with the

walls at temperature T, the photon fluence is given by (Ref. 6):

(4r photonsdF
1 cV2 2 htn (2.23)

dv exp( hv - cm2  sec • Hz

so that at equilibrium, the absorption rate per molecule in a gas-f;lled

cavity is:

64 ne)3 (R 2mnwo (C/W)

nm msec (2.24)
equil. -m
cavity 3hc 3 exp kT

provided the presence of the absorbers does not significantly disturb the

equilibrium photon frequency distribution given by Eq. (2.23).

For very monochromatic photons (such as those produced by a
I I

laser) whose frequency v lies in the range v° - Av° < v < v° Avo

where the "width" Av is very much smaller than the spread AVmn about
0 m

the re5onance v , we have instead of Eq. (2.21) that;
5mn
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Q)8 Tr 3 e2 VK ~mn 2m\-nm 3hco\w ) (R') F gi(v=v,,v ) , sec ,nm 3hc \wn mo mno C0 . vo o mn &mn)

Monochromatic
Photons

(AVo << AVmn) (2.25)

since in the integration of the function dF /dv over the small range AV ,
0

we can replace the function g ,(•vmnAV by Its value at vv . F is

again the photon fluence (photons cm" 2 • sec" 1 ) of the very monochromatic V

photons.

In applied physics problems one often deals with a unidirectional

photon stream F (photons • cm • sec- ) rather than an omnidirectional
(P

photon fluence F which occurs in cavities. For example the photon fluxes

from lasers or light-beams received from distant stars are what we shall

call photon "streams," designated by the symbol . Although the physical

parameters F and F are by no means the same,* they both give the total

number of crossings of photons (regardless of direction) through a I cm2

area per second exposed to these fluxes. The excitation rate in a gas per

molecule is therefore the same for molecules inside a flux P or F .{

That is, for a beam of starlight incident on an absorbing gas:

Kn = OO VSO m (Wm] (R2) sec-' (2.26)

(starlight) (Hz) o(cm')

(Ell)__ _

*The unidirectional photon streamr in a cavity with a homogeneous isotropic

photon density is(p r5 = cnr/2rT and thus in this case r. = Fq,/ 2T.

*,*It is assumed here also that the gas Is Isotropic and homogeneous.
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(9 where we simply replaced F by r in Eq. (2.25), and for a monochromatic

laser beam:

K O0.0 9 60 vnn (- o ,vseclKnm mn w Rm L 0o--vL)vmn vmn
, Laser (Hz) (cm2) (Hz- 1 )
ýAvL << Avmn)

(2.27)

where we replaced F by T and v by v in Eq. (2.25).
L 0

Instead of the photon stream r the unidirectional intensity

I is often specified which is simply related to T by:

(1P

-2 -1
(v) =hv F (v) , ergs • cm • sec (2.28)

Similarly we can define the omnidirectional energy flux H by the

equation:

-2 -1

H (v) = hv F (v) ergs . cm sec (2.29)

Substituting parameters H or I in Eqs. (2.26) and (2.27) instead of

1 9 and FL can of course bt done directly by employing Eqs. (2.28) and

(2.29).
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Another transition parameter that is-useful and which was first

0

defined by Einstein, is the "induced absorption coefficient" Bnm

c3  8we ~ '

Im m n 2 ___ mnBnm 0 ~

35 cm3  H
-4.342 x 10 (~- R2 *H (2.30)

w~ mn)0  erg sec
0 cm2)

The relation between BO and K(0 is according to Eq. (2.21):

v hV )dF \vBn dH 2I

le B m \dV/_ ),sec (-1

*Also called the "Finstein B-Coefficient for Absorption," or simply
the "Einstein B-Coefficient."
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( 2.4 PHOTON STIMULATED EMISSION

So far we considered spontaneous emission and absorption parameters.

The third important photon-molecule interaction is that of stimulated deexci-

tation in which a photon of resonant frequency V = V forces an excited

molecule in state m to deexcite with the emission of a seco-'d photon of

frequency V = V

The cross-section for stimulated emission, am ) is equal to

s.e.2

the absorption cross-section anm(v) ,except for th~e factor (w /wm , that

abs
is (Ref 9):

amnV) n- um)n~~~ dAnv)

a (v) =- a0  (v) ~ __ vv ,v
Brr m n 8' T din 8v

s~e. b

/22mvn -'vvn
=n 0.96 0 mw kmn) 2'' mn inmn ' n

s.e. (z4,cm 2) (H 1

8TT(2.V2)
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TI,e stimulated emission or deactivation rate mn due to a
-2 -

du tphoton fluence F cm • sec is analogously to Eq. (2.24) given by:

D f a (v) dv c' Ad%mn dv d=-
mn V 8rr v2 V-Vs.e. mn mn

V=0

Do Imn mn

mn 3hc m dV ='V

Dmn 0.90vmn( Hz ) R n o (- mn )- .1.se

(2.33.)

Again, another parameter called the "induced emission

coefficient," Bm , may be defined* which can be shown to be equal to

the induced absorption coefficient multiplied by the weight ratio

(Ref. 10), that is:

w C

S35 mn R2  cm3 HzB°=--- B° 4.345 x 10 (,er2•)s.

mn w nm m mn ergosec

(cm 2 )

(2.34)

where B° was given by Eq. (2.30).
nm

*Also called the "Einstein B-Coefficient for Emission," or simply the

"Einstein B-Coefficient."'
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The deactivation rate Do due to a unidirectional beam of I-S~mn .

laser photons r of frequency v v is according to Eq. (2.27) then:

L = L

( ) Lae 0.0960 V (mn) ( . ('L)go(=VLV,VnAvmn) , sec ,
Lsr(Hz) 0 2 2 -

(AVL << AV mn) (cm2 ) (cm 2  sec -)(Hz"1) (2.35)

where the same argument applies for the integration over v as was given

for Eq. (2.25).

The parameters D° and B0 are related by:mn mnn

Do = B0  mn sec' (2.36)
n m n dv /v

V= V mn

for the omnidirectional broad-spectrum case, or:

I!

D = mn L g =Lmn, , sec n (2.37)
mn mn c F L'' 0' L Vmn' V sc(.7

in case of the unidirectional monochromatic laser-beam FL , or:
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D B0 (hmnd1\ sec (2.38)IV

mnI

4 4
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3. TRANSITION MATRIX ELEMENTS AND STRENGTH FACTORS

3. I GENERAL CONSIDERATIONS

In this chapter we shall consider explicit expressions for t0

three main factors R2  , C , and w (or w) in the transition matrix
mn In

element:

2 2
S =C R2  =w r7 r7 CM2, (3, 1)
mn mn mn m m = w n -nmr

where;

" 2 r d- 1, cm2 (3.2)
fk i

k

and (R2m) was defined by Eqs. (1.9), (1.14) , and (1.17) for respectively
mn

electronic, vibrational, and rotational transitions. For convenience let

us write (Rn) in the general form:

02

S2(=o fV 0.R2 ) r d" cm2  (3.3)R~ ~ = omil

reference

47
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Here subscript o stands for elc., vib, or rot, whatever applies and

the prime notation on the states k and of respectively the levels mi

and n, indicate that the transition for which (R n) is evaluated is for

a particular allowed reference transition i' -k . In some problems,

all allowed connections i -• k are equally probable in which case the

primes may be omitted. In some cases Zhe reference transition (3.3) may

be that of an idealized model, corresponding to for example a harmonic-

oscillator approximation of the transition, or a transition in which spin

is ignored. The factor C then absorbs any discrepancies between themn
real and idealized transition. Sometimes Rmnis so chosen that Cmn/(WWn)

is on the order of unity, so that R2 is a coarse approximation formn

Smn/(w wn that is:

C ww (3.4)-•-nn m n

and:

S2 cm2  (3.5)
MR Sn/(wwvj)

The connection factor Cm which wa.s uefined in Chapter I for

el-c,'ronic, vibrational, and rotational transicions, can be written in

the gen',al form:

[ 2

(C.) / °()ok dr.
S< ) z 0m, o I/ :!~ ~~~ 0m od

n m.
Sfnk, k k

ri in 1 ' k'rd, 1

reference

(3.6)
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A

The parameter C appearing in Eq. (3.6), is called the "line-component"tm nk

connection factor, while Cmn is referred to as the "line" connection

factor. Similarly the parameters Smn C Ri and S mnC R'
m nk inn mn mn mn mn

are called the "line-component" strength and the "line" strength

respectively. Note that because of the definition (_.6) we have for the

reference line-component connection factor that:

Cm nk = I (3.7)
in. nk

and the reference line-component strength:

i Ri (3.8)Sm, nk mn

The component lines due to transitions mi. - nk all have by

definition, the same frequency, that is they are degenerate because of

spatial quantization only. If due to the application of external fields,

the line-components become yesolved and have different frequencies, we

must consider .ach such line separately and calculate separate values for
Smus coniderline(absorption) or amI

the line's decay rate Amn • and cross-sections anm pn

(stimulated emission). The factor (Cmn)o which previously represented

the average of several degenerate component lines) now must be replaced

by since now the states m. and n are no longer degen-

erate, and have become levels instead of states according to our definition

of levels and states given in Chapter I,

49
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SThe summation over allowed transitions betweer degenerate

states m. and nk of levels m and n indicated in Eq. (3.6) is illustrated

in Figure 2-I. If all connections (= upwards or Uownwards transitions)

between the w spatially degenerate states of level m and the w spatially
m n

degenerate states of level n are allowed, we would have that w = i and
mM

w = k in the above, and the total number of possible non-identical con-
n

nections would be w w . If furthermore all of these allowed connectionsm n

were equally probable, we would have C = w w , that is Eq. (3.4) would
-,mn m n

apply rigorously. In the general case, this situation does not apply how-

ever, that is neither all possible connections w w are allowed, nor arem n

all connections always equally probable (i.e., the primes on i and k in

Eqs. (3.3) and (3.6) cannot be dropped).

As stated before, from quantum theory the so-called "principle

of microscopic reversibility" can be proven, that is:

S m (3.9)m nk nkmi

and thus:

R2  - S S =R2 (3.10)mn mItnk nk m.I, nm

and therefore:

cn :C (3.11
ma n k n IIIi
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V!

S9Since the summation in Eq. (3.6) is symmetric in i and k, then also:

Cmn nm - (3.12)

and thus:

S n S (3.(3)mn nm

A dimensionless transition parameter that is frequently used

by absorption spectroscopists, is the so-called "oscillator strength"

fnm defined by:

2

nm Ry a
0

8&m r 1 c 8 2e"mn (Rn)( Melc

TT 
mn

(3.14)

One often defines a similar "oscillator strength for emission" by:

n __e mn mRnI~
mn = -w nm 3h \mn \Wm l

SIi

•'•,•~~~..v - o" - -. ... •;.. ,... -. ..... .... . . . . . . .



I 2jq-Eq. (3.14), the parameter Ry Rydberg 2e /a = 2.18 x 10- ergs

-13.605 eV, and a = Bohr Radiu~s h2/(4 i-r2m e) 0.529 17 x 10- cm.0 e

The parameter me = electron mass =0.91083 x 1027 gin, and of course

-27
h Planck's constant =-6.6252 x 10 erg-sec.

In atomic spectroscopy tables (Ref. 14), the strength for

electric-dipole transitions is often expressed in units of e2a2
0

6.4589 x 1 0"i erg-cm3 ., that is, writing e e2 S
Jmn mn

d mn 2 i c 2  (.6
mn e2  - 0  

(3.16

(units -)f e a 0

where-d is the tabulated strength (Ref. 14) expressed in units of

e a2 . Thus if we express S' in units of a2  r 0.2800 x 16- cm2)
o mn o

we have S1  .

in mn

The strength of electric-quadruroole (E.Q.' transitions is

us~~~ tauae nuiso ~ 4 = l.38 05uJO85 erg0 -cm' (Ref. 14).

That is:

3 -1 ( )E.Q. 0 a

E.Q. nin e 10 E.2

inn inn
(S) 2 Units of)

0

-2.ý217 1 0" m (.7
C1112 (3z17
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whereis in units of e 2a4 (erg-cm3), and X Is I.n cm.(JmnE 0 mn
Similarly, magnetic-dipole strengths are commonly given in units of

e2h2/( 16 TT'm 2c') =8.5991 x 10~ erg-cm, and thus:e

en Ir 2ni2 2 =

e

=1.1711 x ,o10 (nM cm2  (3.18)

/ units of
ke'h 2  16 rr nc')1

where (t4) is in units of e 2h 2/( 16 TrIMIC 2).
M.D.

05

Mai



(~j)3.2 ELECTRONIC RADIATIVE TRANSITIONS

The matrix element R~n for an electronic transition between
elc

level m m(L nJm ) and a level n =n(L n~n, j where Lk nkJ are

quantum numbers for the orbital angular momentum, principal energy level,

and total angular momentum (including spin) of an atom, has only been

obtained exactly for the Hydrogen atom, whose wave functions can be

represented by the Laguerre polynomials.*~ One finds for n~ ~n in this

case that (Ref. 1):**

(n (n +n)
hm m n n

cn )H

( nn 2  (2  2nFPP cz

2 12n
nh mn n n

* Th e qunu nme J wilrfrt h oa ngua oetmo h

electrons~~ of th ato hee3o oeue i h eutn nua
mc~~ncintu~ oftence tesrngetefc sal)adt~eetos

**Fr snge letrnsybos ad ae se is oa o L~n S2'
convent ion



where we abbreviate:

p k -[n k 'k- ] (3.I9b) FI,

q [n (3.19c)

c = Ym + Yn + I (3.19d) I

4n n
mn (3.19e)
(n-~ )2

and where the function F(a;b;c;z) is the "hypergeometric function"

defined by:

F(a;b;c;z) k = I + _a-b z + a(a +cl) b(b + ) z2 + ...

n kcZ 21c(c + 1)

(3.20a)

in which:

k a(a + 1) (a + n -i) b(b + 1) (b + n- I)k n= ". .. . .(3.20 b)
(1.2 ..... n) c(c + 1..(c + n - 11

k= I (3.20c)0
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9 ©The Dirac delta function (8(x) = ,for x o ; 6(x)-o for x o) in

Eq. (3.19a) specifies the selection rule:

An m - (3.21a)n m

For convenience we shall adopt the convention that Am is the larger of
m

Im and A , and label it A.* In this case (3.21a) reads:n

A = A + I (3.21b)Sm n

Note that Eq. (3.19a) is independent of the quantum number J

Note also that Eq. (3.19a) is symmetric with respect to an interchange of

(nA) and (n ) , (but not for A -'n A or n -. n alone.), as t
m mm nnm n m n

must be of course if R2  is to be equal to R2 
. The Dirac delta functionmn nm

in (3. 19a), that is condition (3.21), reduces the apparent numbe~r of

independent variables in Eq. (3. 19a) from four (nm nn•,Amn) to three

(nm)nnA) of course, that is:-

I" I (nm n P n

"Hydrogenic 4A-I m (nn
A -: sup(im [n)

*We shall denote this by I sup(,mi)
6 n
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2 - In(n + nn

4 2 mee2  4(2.- 9'm + n1n!

/ ~(t + i)

•~~~ m e e~m2b cmz n m 32a

4n n

m n
(n -~ ) ~ F(a ;b ;c;z) +

- ( 2 2 Fmm2bcz ]n c 2
, 32a

with"

am-= -(nm - L - i) (3.22b)

bn =-.(nn .- ) (3.22c)

c = 2A (3.22d)

Inn n

nm n

In Table 3-I adapted from Ref. I, values for, e(RI•,• are listed which were

obtained via Eq. (c3.22).

For transitions n = n , m the matrix element is instead

m n

of (3.15a) given by (Ref. I):
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2
2 9

n 4n 2 e

cHydrogen ice
m 

n

where we already used the condition (3.21b) in Eq. (3.23), that is we choose

I to equal the larger of Lm and A and applied the selection rule for changes•:. n

Sir 2, . Equation (3.23) does not apply to the Hydrogen atom itself but is

important in the Stark Effect, when the degeneracy of states at a level n k

is lifted.

Equations (3.22) and (3.23) can also be used for transitions in

atoms which have closed inner cores of electrons and one outer electron, that

is "Hydrogen-resembling" or "Hydrogenic" atoms such as the alkalis. In

Table 3-2, values of R2 calculated from Eq. (3.22) as well as from (3.23)
mn

are listed for specific transitions in Hydrogen or Hydrogenic atoms.

The energy levels Ek of Hydrogen are (Ref. I):

Ek =Eo - = 3.60 [I 1 2 eV l (3.24)Io m •MH UY nn

where m and MH are the electron and Hydrogen atom mass, Z H is the charge ofeH

the Hydrogen atom, and Eion is the ionization energy = 13.60 eV. Emitted

photons have of course the frequency s) (E - Em)/h with E and E in
M n m n

ergs (I eV - 1.6021 x 10"12 ergs).

The quantum number Zk in tha above is the orbital quantum number

of the single electron in the Hydrogen atom at level k. Since there is only
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one electron in Hydrogen, we can set A Lk in the generalized language for

multi-electronic atoms, if we consider Hydrogen as a special case in the

class of all atoms. For the Russell-Saunders approximation which we shall

assume to hold for all cases of interest, an electronic level k is completely

specified by the three quantum numbers (nk LkJk) for atoms or (nk Ak,]k) for

molecules (Refs. I and 2). Here:

Lk! k I (3.25)
i I

l I (3.26)

kkSk
•k L.1 

5 k. (3.27)

k

Ak- LkL a (3.28)

nk A k + ;k (3.29)

Sk S k a (3-30)

"• ' Sk •k (3.31)

The surmi ations in (3.25) and (3.27) are over the i electrons of the atom

or molecule, A is the orbital momentum quantum vector and s the spink.. k
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(9, quantum vector of electron i of the itom or molecule* whose er, ergy level is

designated by k.* The vector a i," a unir. vector along the principal axis

of the molecule, which for a diat•,mic molecule for example passes through j
the centers of the nuclei. Actually only for linear molecules are Ak and

Z well defined and useful for describing quantim states. The appropriate

quantum numbers for nonlinear molecules will be discussed later,

QUantization rules dicta4 'hat L and A can only take on
k k

integral values, while S and E can have half-integral values in addition

to integral values. From the definitions (3.26) ar.i (3.29) we see Lhen

that Jk can only take on positive integer or half-integer values, the

largest of which is (Jk) + ISI and the smallest of which equals

L I or (Jm' = whichever is smaller. On the other hand(Jk)min Ikmn 1skl

for molecules can take on both positive and negative integer or
I

I half-integer values if Z~ is larger then Ak

It can he shown (Ref. I) that the atomic level k specified by

the set of quantum numbers (nk LkJk) has (2Jk + I) degenerate states of

equal e:,ergy due to the fact that a given value J can be obtained by
k

(2Jk I) different vectorial comb'nations of differently oriented vectors

"L and S Thus the "degeneracy" or "statistical; weight wk of atomic

level k is given by the formula:

* For molecules, the summation of angular momenta mist also include the

momentum of t.• rotating nuclei. We shalh discuss this later and not
consider it here however.

**By "quantum vectors" we shall mean here the integrally or half-integrally
valued angular momenta or spins with their directions in atomic units of "h.
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(Wk) =J + I (3.32)
•~( Lk, JR)

If we consider the multiplet splitting (see below) due to spin to

be negligibly small (as is usually the case) and assume that the sublevels

with different values of S (and therefore J) belong to cne energy level or

"term" (nk Lk), the statistical weight (= number of substates) is however

instead of (3.32):

(Wk)a : (2Sk + 1)(2L ) (3.33)

(Sk, Lk)

For linear molecules (which include all diatomic molecules), there

is a twofold degeneracy with respect to the quantum number Ak for each level

(nk, Ak) if Ak # 0, since there are two possible spatial directions for Lk

giving the same value for Ak (see Eq. (3.26)). If Ak = 0, there is no

de9eneracy with respect to Ak. There is a (2Sk + I) degeneracy (= multiplicity)

due to the spin Sk , if we consider the small energy differences of the mem-

bers of the multiplets insignificant and treat them as states of the level

or term (nk Ak). Thus:

(wk)(sA) = 2(2Sk + I) if Ak 1 0 (3.34a)

Linear- Molecules

(Wk 'A(2Sk + 1) if Ak 0 (3.34b)
Lie(S ar Mkole

Linear Molecules



2 Q) For nonlinear molecules, one can no longer -describe the

electronic levels adequately via the quantum number A (with levels Z H ,

A j,ý , etc.). Instead the electronic level- are described by their sym-

metry properties (Refs. 10 through 13). For example designations A , B

and A', A" are used to deiscribe the non-degenerate symmetric and antisym-

metric levels of molecules who have symmetries of respectively the C2 and

C point groups; for molecules with symmetries of point groups C2v and
S 2

C2 h , the four possible non-degenerate levels are designated A, , A2 , B,
B and A , A , B , B respectively (Ref. II). Molecules with more

2 g u U g

symmetry such as those with point group C3h can have, in addition to non-

degenerate levels A' A" also doubly degenerate levels E' and EC,

while molecules with even more symmetry (e.g., those belonging to point

group Td or Oh) have in addition to singly degenerate levels A, B and

doubly degenerate levels E, also triply degenerate levels that are

designated by the symbol F.

For the purpose of determining the statistical weight of the

electrcnic level of a nonlinear (polyatomic) molecule then, we may write:

W = dX (2Sk + I),1
k(SX) k (3.35a)

k'Xk)(nonlinear polyatomic molecule)

where X = A, B, E, F , and where:*

*In Herzberg's tables of molecular properties (Refs. 2 and II), electronic
levels for nonlinear polyatornic molecules are designated by one of the
symbols A, B) E, F , hence the value of dXk is quickly determined.
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d - (3.35b)

AI

d~k = (3.35c)"

= .
dEk = 2 (3.35.d).

k

d =3 (3.35e)

Fk

The spin degeneracy or multiplicity (2Sk + I) is usually written as a left !N

superscript on the level designation A, B, E or F for nonlinear molecuies. i

For example 2A' is a level with S = 1/2 and species A', while 3A has S = I

and species Au

Comparing (3.33) with (3.34) and (3.35), we see that atomic state)

are more degenerate than molecular statest The reason for finding less

degjeneracy in a rmolecule then in ani atom is due to the fact that a molecule

is less symme~tric (as "seen" by the elect'•ns) than an atom and therefore. •.

it has more energy levels for a given number of states.*

Both for atoms and mo~lecules, energy levels with the same values

s sof nk and Ll or k and Ak (or X. for non-linear moleculesi) are called

F See Chapter 1 for our definition of "levels" and "sta'es."

adWe shall keep the designation Ak in what follows for all moAecules even
though it has little meaning for nonlinear molecules. For the latter we
shall assume that Ak stands for Xk anu that the value for Ak equals (dX-I).

of n nd L r 'h nd A Or X or5o-iermlclsH)aecle



"terms" (Ref. i), while the various levels of a term (nk,Lk) or (nk,Ak)

with different values for J or 0 are called the term's sublevels. The

assembly of allowed transitions between the various sublevels of one term

say (nmAm or Lm) and the various sublevels of another term say (nn,An or Ln)

is called a "multiplet."

( Because of the selection rules, there are for an atom (2S + I)

multiplet members if S > L , and (2L + 1) multiplet members if L > S. The

number (2S + I) is called the "multiplicity" of the multiplet even in case

L > S. If 2S + I = I, (S = 0), the multiplet is called a "singlet"; if

2S + ,1 2, (S 1/2) it is called a "doublet" ; if 2S + 1= 3, (S 1)

it is called a "triplet," etc.

For molecules, provided A O0 0 the multiplicity is always equal

to (2S + I), that is it is equal to the number of Z values, regardless of

whether S is smaller or larger than A. If A 0 the multiplicity is I1

that is we have a singlet.

For atoms (including of course the Hydrogen atom), the connection

factors C C((nm,LmJm) -. (n, L, J)) for dipole transitions-are given

by (Ref. 1):

W -.J =J -l (1+L(--
m n nli (J +I+S +m mmm JI -Sm+L )(J -S +L)

•mn L'Ln=L m = L -
elc n m4J

\m n m / (3.36a)
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Ill n I (2J + I)( J + I+S +Lm)( Jm+ I+SmLm) (JmSm+Lm)(Sm+Lm-Jm)
;Cmn L -.L -II= m(el) I II n 111 4j (1 +i)

m m
II n mI

(3.36b)

ImIInm+ I (J +2+Sm L) (J+I+S- L)(S+L-J- I)(S+L-J)

Cmn -L L -Ln=L -I
Selc= 4(Jm+ 1)

n nm

(3.36c)

JnJnJI I (J +s Lm)(J-Sm+Lm)(J+ l+Sm+L)(S +L J +I)

Cmn L -4L III II m m m III IIIm
elc ImInm I4jI

S-S =S m
II n m

(3,36d)

2m n= m (2Jm+l) I(J+l)- sm(sm+) + Lm(S+l)0Cmn L -.Ln=L II II m mm mmI mmelc 4JmJmII
\Sm"Sn=Smm

(3.36e)

III n III (J(+)I-Sm+Lm)(Ji +,+smL)(J +2+S +L )(Sm+Lm-J)Cm c m IIILn M/ II =II I m m II M I

elc II n II\Sm-.n:SmJ4(J + 1)

(3-36f)

S(JmJn(Jm' +s L -)(IJ+s L(S +L J+)(S +L -J +2)l III' m n mi m- II in in II m " n

Cmfl L -sL :L +I. M-+~J+1S~

etc \4JS m-'S n=S m

(3.36h)
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' mJn m (J + I-S M +L )(J m +2-S m +L )(J In +2+S n+L )(J I-+3+S +Lm)mmCmn L-Ln= Ln+ In m m m m m
elc 4(J i)S -•Sn=SmI

(3.36i)

For (electric) quadrupole transitions the connection factors are

more complicated. We shall not write them out completely here; they may

be obtained however from the formulas given by Condon & Shortley (Ref. I)

via the relations:

Cmn m n m 3

e Lm-c n = L Jm(Jm+1)(2J l)(2 J-1)( 2 J+3) D2 Rn (3.37a)
E. . S -.S --S E. .

m n in

~c~t~ n - Jm(Jm+1)(Jm l)(2J +1)(2Jm1) E/R (3.37b)ml LLn 2 'm m In In.37b)

n m

E.,SmS=Sm E.Q./

Here D2, E2 and F2 (see Ref. I, pp 95 and 96 for their definitions) each

have three possible values depending on whether AJ = Jm-Jn = 0, -1, -2,

which are the three allowed posslble changes In J for a quadrupole

t rar's It I on.
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C) It should be remarked that the connection factors (3.36) are

applicable to both electric as well as magnetic dipole transitions. The

relations (3.36) for Cmn apply to all atoms in contrast to the expression

(3.22) for R which applies striktly only to Hydrogenic atoms.mn

In many problems, the small energy jifferences between levels

of various J values is small and we want to consider tih totality of

transitions from une term (nMLm) to another term (nnLn). In that case,

summing the specific connection factors in (3.36) over the various allowed

values for J and J n we find (Ref. I, p. 239) for dipole tran•sitions:

m n m/

L -L =L

m n

C Lmnm ) = (2S-+1)(2Lm+I)Lm(Lm+I) (3.38b)

m n m

/L -L=L +1
C I~mn Sn Sm ) = (2Sm+ I) (2Lm+ I) (Lm+ I) (2Lm+3) (3.38c)

____ (S_____ S________ m nin



It should be noted that we have only provided transition

connection factors in which the spin quantum number S S in Eqs. (3.36)
n in

and (3.38). It has been found that transitions in which S I S arem n

very weak and often do not exist at all, hence in first approximation

one may assume that transition elements for such transitions are zero.

For electronic transitions in general then, the rules are that:

A= 0 (3.39)

AL= L - L n 0 provided L , n or (3.40a)m n m nl

AL :± (3.40b1)

AJ Jm J n 0 , provided = J. n 0 , or (3.41a)

J - I (3.41b)

Whereas, as remarked) the factors C apply to any atom, the
mn

expression R2  in (3.19) or (3.22) appl!es strictlv only to Hydrogenic
mn

atoms. A general expression for R2  applyi,.9 to any atom is not availablemn

and only special calculationc f r R2 of some selected atoms of the periodic
nln

table employing various cpproximations are available in the general

literature.
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An approximate relation for R2 for multi-electron atoms may beUj mn

obtained by using the hydrogenic relation (3.22), setting A = L, and assuming

that: (a) only the outermost electron of the multi-electron atom makes a tran-

sition, and (b) that this transition takes place in an electric central field

potential whose strength is Zeffe 2 /r instead of e 2 /r as is the case for the

Hydrogen atom. Z is then the average effective nuclear charge that the
eff

outer electron experiences after we take into account the screening effect

by the inner electrons. Assumption (b) is not too bad, but the assumption

that only one outer electron in the valence shell is jumping is more serious

since in reality a radiative transition in a multi-electron atom involves

adjustments by afl the valence electrons. Howevw.r the "outer-jumping-electron

approximation" appears to give fair results for many atoms and suffices for

order-of-magnitude calculations, if no other relations are available.

The effective charge Zff may be determined fr~m the experimentally

measured ionization energy E.on by the equation:

SZef hv Eon/RY I1/2 (3.42)

where:

Principal Quantum Number of Jumping Valence Electron (n !r. n m n

Ry Rydberg constant = 13.605 eV

E. o Ionization Potential, eV
ion

In Table 3.3: values of Zeff and nv are listed for the first thirty-six

elements of the periodic table.



TABLE 3-3. PRINCIPAL QUANTUM NUMBER OF THE EMITTING ELECTRON,
IONIZATION POTENTIAL, EFFECTIVE NUCLEAR CHARGE, AND SHIELDING

CONSTANTS FOR THE FIRST 36 ELEMENTS OF THE PERIODIC TABLE

Valence-Band Effective
Atomic Principal Nuclear

Element Number, Quantum Energy, Charge,

Z N Number, Eion ev E, fnv nv Zeff

H I I 13.595 1.00
He 2 I 24.580 1.35
Li 3 2 5.390 .25
Be 4 2 9.320 1.66
B 5 2 8.296 1.56
C 6 2 11.264 1.82
N 7 2 14.54 2.07
0 8 2 13.614 2.00
F 9 2 17.42 2.26
Ne 10 2 21.559 ? 52
Na II 3 5.138 1.84
Mg 12 3 7.644 2.25
Al 13 3 5.984 1.99
Si 14 3 8.149 2.32
P 15 3 10.43 2.62
S 16 3 10.357 2.62
Cl 17 3 13.01 2.93
A 18 3 15.755 3.23
K 19 4 4.339 2.26
Ca 20 4 6.111 2.68
Sc 2i 4 6.56 2.78
TI 22 4 6.83 2.84
V 23 4 6.738 2.82
Cr 24 4 6.76 2.82
Mn 25 4 7.432 2.96
Fe 26 4 7.896 3.05
Co 27 4 7.86 3.04
Ni 28 4 7.633 3.00
Cu 29 4 7.723 3.01
Zn 30 4 9.391 _32
Ga 31 4 5.97 2.66
Ge 2 4 8.13 2.09
As 33 4 10.05 3.43
Se 34 4 9.750 3.38
Br 35 4 11.84 3.73
Kr 36 4 13.9%, 4.06
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Applying the above indicated modifications to Eq. (3.23) for the

case that n = n yields then:

m n nm n v

L sup(L m Ln)

Sn2 -L2 n2

0.595 x 1I0 1- cm , (3.43)
4L2-I Z

eff

where we wrote out the value for the square of the Bohr radius a , that is:

a2 = 0.52917 x 10-8 cm = 0.2800 x 10 16 cm2

4&me (3.44)

which is the natural unit for atomic L.ross-sections.

For transitions in which n i n ý we modify the hydrogenif
n m

equation (3.22) in d similar manner to serve as an approximation for

multi-electron atoms. The result is as follows.
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(0.2800 x I0 16  (nm+LQ!(nm+L-l)!

mn )Atom Zef0 -1 (n1f n Q

n ý n
m n

n , n ! n
in, n v
L sup(L )L)in n

-n n) (L+ 1)
n -n) nnn 4 n

m+n4(2L- 1)! nm +nn (nm-n n )2

22

• F(am b c " z) n7 m +nnF(am-2 b bn ;c ;Z) cm 2

(3.45a)

Here we used (3.44). The functions F(a;b;c;z) are again the hypergeometric

functions defined by Eq. (3.20) in which the parameters are defined by:

am I - L-1) (3,45b)

b "(n -L) (3.45c)

c 2L (3.45d)

4n n

Z - in (3.45c)
(n -11 )

m n

7I



) For molecules, the electric field in which the valence electrons

move is not radially symmetric as it is for atoms, hence the "central field

approximation" on which (3.43) and (3.45) are based and which is fair for

atoms, is somewhat uncertain for molecules. Nevertheless in lieu of a

detaiied calculation using approximate molicular orbital wave functions

(which are available for only a few molecules), we may use expressions

similar to (3.43) and (3.45) as a coarse approximation:

2F.1nf

-16/S ~m n -A(Rn0.595 x 10 zmnec f 4A2 - I

(moleule

(n n nn

=I___ 0.9 01 y 'm - A2

""R __, cm2

0.595 x11 Tnv ) 4,-E

_____(3.46)

0.2800 x 10 Ry;

(mn) elc n "2 14A2 -II (E O (n'-A-)(nn-A)!nmolecule 4 ion

A sup(A 1A h

nn n/ Am

.I n -n 4n n ( n
42A-l)! n In (n n•;m m nn ,

n nl
Z) II n F(a c z , cm2

I n

75i (3.47a)



S I' I I . .. .1 . . ... . ......... .. ..,- | I --.. .. ..- ' -- 'l l . .. . . . .. . . -- -

Here we used Eq. (3.42) and as before Ry = 13.605 eV while:U

am -(n M-A-I) (3.47b)

b -(n-A) (3.47c)

- 2P. (3.47d)

4n n
n m

r. M

We substituted A for L in Eq. (3.47) which is actually not quite

correct since L = j , while A = a a (see Eqs. (3.25) through (3.31).

However in most cases of interest we are considering only small integer

values of A in which case A - L.* The real difficulty here is of course that

we are trying to fit a radially symmetric solution to a non-radially sym-

metric problem. The approximations (3.46) and (3.47) car. therefore at best

be expected to give only order-of-magnitude answers, which are stiMl better

than no answers at all.

The parameter Z eff nv and E. appearing in Eqs. (3.46) andeffion

(3.47) were defined in Eq. (3.42). In Table 3-4 values for Zef, E. and

*By convention, for linear molecules, levels with A = 0 are designated Z
levels with A = I are designated RI , le'vels with A 2 are designated A
and levels with A = 3 are designated I . For nonlinear molecules, which
are designated by the symmetry species A , B , E , and F , we may set
A = 0 for A and B species, A I for E species and A = 2 for F species as
an approximation.
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TABLE 3-4. EFFECTIVE CHARGE NUMBERS OF MISCELLANEOUS MOLECULES

IValence-Band Equivalent
Principal17-I

I~eue Ionization Equivalent Quatu ion
Moecle Energy, Printipa Lumbesto ff DV

Eic (eV) Qunu oet

Excitations,

1215.422 1 2 1. 065
02 12.2 33 2.-3,42
N2 15-576 3 3 3.211

2 15.7 3 4 3.224
CA2  11.48 4 4 3.676

CO 14.009 3 3.091

H CA 12.74 3 4 2.904

HF 15.77 2 3 2.154

NO 9.25 3 3 2.475

OH 13.17 2 2 1.968

HS !0.50 3 3 2.636

H 0 12.618 2 3 1.927

CO 13.769 4 4 4.026
2

N 20 12.893 4 4 3.895

NO 9.78 4 4 3.393
2

so2  12.34 4 4 3.811

H2s 10.472 3 4 2.633

HCN 13.91 3 3 3.035

OCS 11.24 44 3.637

CS 210.079 5 5 4.305

03 12.800 4 4 3.881

NH 10. 154 2 3 1.728
3

CH4  12.99 2 3 1.95514
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"' equivalent n numbers are listed for some of the more common molecules.

For n and n in Eqs. (3.45) and (3.47) we must take values that correspond-•"m n

to assuming that the nuclei making up the molecule are merged and have a

total electric charge and electron cloud equal to that of an atom whose

charge and electron cloud are the same as the sum of the charges and elec-

trons of the nuclei. In most problems if nn is the lower of n mand n n

we have that n = n , that is it equals the equivalent principal quantumn v

number of the valence orbital based on the assumption that the nuclei are

merged.

For the purpose of obtaining order-of-magnitude estimates of the

transiti n elements of purely electronic transitions, Rmn , it is some-
elc

times useful to consider the transitions of an ideal three-dimensional

harmonic oscillator model in which an electron is assumed to oscillate in

a three-dimensional potential well, experiencing a restoring force whose

magnitude is proportional to the square of the displacement of the electron

from the center of the well, that is F k r 2 instead of F = Ze2 /r 2. The
0

electric dipole transition element R mn for the three-dimensional harmonic

oscillator has the very simple form (Refs. 4 and 6):

(m + n+ +\(2) 2 2 a y m + n + 2 3.8
mn H.O. 8Trmv 2 ( cm2 V (

e o

where m is the electron mass and v is the fundamental frequency of thee 
o

harmonic oscillation which is related to the torce constant k by:

78
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o ko/m (3.49)

E is given by E = hv , Ry is the Rydberg constant (=13.605 eV), and as
0 0 0

before, a is the Bohr radius (= 0.52917 x 10-8 cm).

The indices m and n give the order of the allowed oscillating 2

levels. The allowed energy levels of the three-dimensional harmon~c

osciliator are found to be:

Em hv (m + 3) m = 0, I, 2 , 3 .... (3.50)

and the selection rule for transitions m n is:

-n (3.51)

thus:

E E : E hmn E = hv , (3.52a)( m ( n) mn mn 0 0

or:

V V (3.52b)

The statistical weights of level k of the three-dimensional

harmonic oscillator are (Ref. 4):
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(( )3  '(k + 1)(k + 2) (3.53)S•Vk ~3D. H.O0.= '

and if we assume that m is the larger of in and n and m - n = I, we have:

(Cw, = (m+ l)(m+ 2)(m + 3) (3.54)Cmn )D.H.O. m n 4"

When substituting Eqs. (3.51) and (3.52) into Eq. (3.48) we find

for transitions between the ground state n 0 and m = I that:

R o h a2[Ry

(R2 h =a2( ~ ,cm2  (3.55)
n3D.H.O. 8-r2m V V cu (.e m

while for this transit*,on:

(C)o t (I + 1)(, + 2)= 3 (3.56)Cn3D.H.O.=

When (3.55) and (3.b6) are substituted into Eq. (3.14), we find that t,.a

dimensionless oscillator strength fnm is:

(fnm);Do (3.57)
3D.H.O.
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Thus r.masured or caluculated values of f for actual elnctronic

transitions give a measure of the deviation of the actual situation from

that of the ideal three-dimensional harmonic oscilletor mode! (for the

ground-state-connected transition n = 0 - m = I).

Values for the oscillator strengths f of atoms and molecules
nm

vary usually between I02 and 10 (Ref. 14) and many of the important ones

lie in the range 0.1 nm 1, 2 as may be seen from Table 3-5. Thus in

cases where information about a transition is very scanty, one may take as

a crude estimate:

fn ~ 0.5 (fnm) (3.58)elc Y3D. H.O0.

"and therefore according to Eq. (3.55):

--- 01ox I 16 13.605

R2n 0. 14X1
/Rmn C) 2u E " E•

\elcJ 2 mn /
/crude approximation (eV)

for atoms and molecules)

1.5365 x 10 4.606x 10"4m

Vmn(cm-I) mn (THz)

(3.59)

where we used (3.44) again and where Emn is In eV , and Vmn is in units

of cm or THz (= 1012 Hz).
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The utter simplicity of Eq. (3.59) gives it much to recommend it

in place of the much more complicated molecular expressions (3-46) or

(3.47), particularly in such applications as preliminary engineering design

problems which rely on this paraneter. Even though Eq. (3.59) may be off

by a factor of 10 (high or low), it may be preferred over (3.46) or (3.47)

since the accuracy of the latter expressions is not well known (very few

data have been published on molecular oscillator strengths or related

parameters with which one could check Eqs. (3.46) and (3.47)). Note here

that we have only approximated the R2 portion of S by the expressionmn mn

obtained for the three-dimensional oscillator model; not the weights wm ,

w or the connection factor C which we will discuss next.trnsortie onsnectween states with toa nua mmnu o tts tn~ mn

The connection factors for molecules which give the possible

Stransitions between states with total angular momentum J mto states with

total angular r'lmentum Jn are determined primarily by the rotational

quantum number J due to the nuclei, rather than J due to the electrons

(though the electronic J also plays a role). Since we shall take up the

rotational transitions separately later on, and include them in the term

G(VVmnAVmn) or g(v,v mn,Av)n) , we need only consider the total connection

factor between levels (n, Am) and (nn, A) here. If we consider the levels

due to different values of the spin quantum number S to be substates of

the energy levels or terms (nk, VkJ or (Xk) , we have:

(C) w w : dX (25m + I) dX (2S+ I)
elc m n (3.60)

molecules
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( where Sk is the total electron spin quantuwm number of level- k , and:

d = I , if level or species X = E ; A , B (3.61a)
Xk

d = 2 ; if species or level X = E ; I , A , , ... (3.61b)
X
k

dX =3 , if species X F (3.61c)
k

For molecules then, we may obtain approximate model expressions

for electronic transitions by using the simple expressions (3.59), (3.60),

and (3.61), that is:

-121.5365 x I0 w1
m nmn )Cm " m

(S)lc (C)elc elc (cm)
molecules molecules molecules mn

4.606 x 10 w w

• (THz) , cmVmn

(3.62,
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I
(9 where: I

w dX (2s, + 1, (3.65)
m

wn dX (2Sn + 1), (3.64)
n

with dx and dx as defined in Eq. (3.61).
m n

j
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3.3 VIBRATIONAL RADIATIVE TRANSITIONS

3.33.1 Diatomic Molecules

For vibrational transitions in diatomic molecules, or transitions in

one vibrating bond of a linear polyatomic molecule, one can approximate the

vibrations quite well by using the one-dimensional harmonic oscillator model.

For transitions between vibrational levels vm and vn one finds, using harmonic

oscillator eigenfunction in Eq. (1.14) (Refs. 2,7, and Appendix A):

v m+ vn + i

m 2n+ j h2i IV -VnI (V + v + I) hz c2
=n 8T 217 cm2

AV) I T2 ABV e2  I6 RABV

diatomic (3.65)*

In Eq. (3.65) z is the effective charge of the derivative of the dipole
formed by the separation of unequal average charges that are distributed

around the two atoms of the molecule which are spaced on the average a jI
distance re, that is z, (ree) [s=(s)laSsse

where z(s) is given by (see also Appendix B):

z(s) z • + - z1)(r/s) , (3.66)

The parameter MAB in (3.65) is the reduced mass:

R -A MB
MAB= MA + MB , gms , (3.67)

*Since Ivm - v = I we could omit this term In (3.65); we leave it

in since we shall later generalize to the case Av 4 I.
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Q where:

MANB = Masses of respectively component A and :;,'.onent B
of the vibrating molecular bond A - gms

Instead of the charge parameters given in (3.66), dipole moment parameters

P. are often used, that is (Ref. 7):

p.=zes =z er + z e(s " re) = + p1(s - re) , ergI/2 cm , (3.68)

where:

p.=0 ee ,eg1/2 cm312  (3.69)

•)1/2 3/2
i4l z Ie r erg ,cm (.3.69)

0 e

IIz erg 1/2 *m 1/~2  (3.70)

The other parameters are:

s= s(t) = Instantaneous relative separation of molecular
components A and B , cm

r eEquilibrium separation between molecular components A
e and B . cm

Vmn Furidamental frequency of vibration of bond A - B , Hz

In Figure 3-1, curves of Eqs. (3.66) and (3.68) are shown to

illustrate the behaviour of z and p. for the cases z zo z =2zo, and

zI =-2z° . Note that z =z at r=w, and z =z at r= re
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In Appendix B it is shown that if z and r are given, it is0 a
possible to calculate zI by means of basic microscopic relations of atomic

physics. Thus (see Eqs. (B.52) and (B.53)) we have:

= zi(pd) = zl(zO, re) (3.71)

The relation (3.71) between z and z is plotted in Figure B-2 on page B-27
0

of Appendix B. Note that for positive values of z , the solutions for z,
0I

is double-valued. Also note that z can be positive or negative. It is

ur-tally not too difficult to determine which z value applies however, since

the intermediary parameter Pd 0.922 Zdre which relates z and zo must be

-eff effsuch that Zd Z A- z has a reasonable value. For example in obtaining
A B

the z value for OH from the literature value of z= ±0.3561, we find that

z 0.096 (Z 0.447) or z -0.3 (Z 1.565), if z +0.3561, and

.0 .(.d ( 1.676), if z -0.3561. Only the solution z 0.096,

z = 0.3561 with Zd= 0.447 is compatible with the fact that H can at most

eff
have a value of Z I.

'A

Tn Table 3-6, values for i•° • r , z , and z for some selected
0 e o

diatomic molecules are listed taken from data given in Refs. 2, 15, and 16.

Additional values for some other molecules may bp found in Appendix B. Data

on directly measured values for zI (or Pl) are rather scarce and thus Figure B-2

of Appendix B was used if such experimental values are unavailable.

Notc from Table 3-6 that the more homopolar the molecular bond

is (e.g., CO) the smaller z is, while the more ionic it is (e.g., KU), the

larger the value of z as one would oxpfct. However z may be quite

different from the value of z end may not follow this rule. Also note
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that for homonuclear diatomic molecules such as H2 , 02 , and N2 the dipole

moment po = 0 and z = 0 as one would expect since they are completely sym-

metric. The same applies for the vibrational ground state of a symmetric linear

polyatomic molecule such as O-C-0. However whereas z = 0 for the vibrational

ground state (v = 0) of O-C-O, zI 1 0 for the nonsyminetric vibrations of OCO.

For molecules such as 02 , NZ and H2 on the other hand, z° = z, = 0 for all

vibrational levels. We shall discuss the polyatomic situation more fully in

subsect~on 3.3.2.

Statistical weights for the vibrational levels of diatomic molecules

are:

w =I , (3.72)S~vk

and therefore:

C w wV (3.73)Cmn Vm Vn,

m n

The spatia! orientation of the axis of the dkatomic molecule is quantized

into various allowed rotational states which we shall take up in the next

sýBctioi. That is, degeneracies due to spatial orientation of the vibrating

nolecula," axis will be incorporated in the formulas for the rotational

sublevels which we shall consider later. As far as vibrations alone are

concerned, Eqs. (3.72) and (3.73) apply "for diatomic molecules).

The one-dimensional harmonic oscillator model allows only

transitions for which:

AV V V (3.74)
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while its energy levels are given by:

E Vhve (+ Vk) :Vk 0, I , 2 ... (3.75)

where:

hve =E - Evk=0 (3.76)
kk

Because of the selection rule (3.74), we see that for allowed transitions

vm v , the energy of the emitted (absorbed) photon is:

E -E =E = hv =hv ( (3.77)
v v mn mn e

m n

and thus substituting v for v in Eq. (3.65), as we did, is justified.mn e

In conclusion then for Av I transitions in diatomic molecules,

we have (taking for convenience v to be the larger of vm and Vn)

v hz 2

/ Sn mrn ib 8r 2 A v

diatomic diatomic AB mn
(V 0-V -- 0)

( Vm n m) ( nV n

2 v

1.6861 x = 5.0548 x 7 m ) cm2

ýASMn AB mn
(amu)(cm") (amu)(THz)

•,,•! ,( 3 . 7 8 )
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(...where MAB is in atomic mass units (amu) and v is In cm or in

THz (TeraHerz = 1012 Hz). Values for z must be taken from Appendix B or

Table 3-6. Of course according to (3.72), w v wvm
m n

Now the actual vibrational motion of a molecule Is not quite

harmonic but more like that of the anharmonic oscillator. Although to

first-order all the above relations for R2 and S which were derived
mn mn

using the harmonic oscillator model still hold (Refs. 2 and 16), an

important change is that for the anharmonic oscillator, transitions

with Av > I are also allowed though with much lower probability. From

the work of Heaps and Herzberg (Ref. 17), we find that to accommodate

anharmonic transitions we must multiply S and R2  of Eq. (3.78) by
mn mn

the factor:

(vm - v - I)
xe (vm -I)nk,(vm e (3.79)

v > v m Vn (n

diatomic)

where v is taken as the larger of v and v . The factor x is thein In n e

so-called anharmonic constant which has been tabulated by Herzberg

(Ref. 2). Valies for x for selected diatomic molecules are listed in
e

Table. 3-6. In Appendix C, a general method is given to calculate xe

for other molecules.
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Multiplying (3.79) with (3.78), we obtain:

(v- v - I)
( (Cn \ I hz2

= Cmn mn 2 vA
Smnvib R) (v -V) 2 nn 8rn2 AB ve

diatomic diatomic
(v > v)

(v- v-)
Xn v hz, (v v

(v -v) 2  v n 8rrT2MB~ I m n ABmn

(Vm V n 1 2

X v. 1.6861 x 0I0 z ce 2"-"T" ' cm•

(v - v) vn MAB(amu)V (cm- )

(3.80)

In Eq. (3.80) we replaced vmn V e of (3.78) by vmn = (vi - vn)v e since

for transiticis with Av it I , Eq. (3.77) no longer holds, but (3.75) still

holds approximately, that is for the anharmonic oscillator:

E hv (v + - + )2 lv (Vk + )(3.81)

v e k 2'e~ eVvk Te

where the anharmonic term with xe is small and may be neglected to

first-order. Values For v e of selected diatomic molecules are listed in

Table 3-6.

Note that if v - v I , Eq. (3.80) reduces to (3.78) as it
m n

should of course. Comparing (3.80) with (3.78) we see that the factor

vm (v M vn + 0)/2 of Eq. (3.65) has been replaced by the factor:
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v v

x m n v!

k(vm V Vn) = e m (3.82)

Sm(V V ) Vn`

diatomic)

3.3.2 Polyatomic Molecules

In treating vibrational transitions of polyatomic molecules, it

is convenient to divide them into the following classes (Ref. 10):

I. Linear Molecules

2. Planar Molecules

3. Pyramidal Molecules

4. Tetrahedral Molecules

5. Octahedral Molecules

6. Other Molecules

When molecular vibrations are considered together with molecular rotations,

another classification is often employed:

I. Linear Molecules

2. Symmetric Top Molecules

3. Spherical Top Molecules

4. Asymmetric Top Molecules

It can be shown (Ref. 10) that linear molecules (such as O-C-O
or H2-C-C-H ) have in general (3N - 5) so-called "normal vibrations" while

nonlinear molecules (such as NH3) possess in general (3N - 6) normal
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(9" vibrations whose frequencies are labeled v1 , , 3  . N

stands here for the number of atoms In the molecule. If several atoms of

the molecule are the same, or groups of atoms are the same several normal

j vibrations will be identical however, and the effective number of different

normal vibrations is less than (3N - 5) or (3N - 6). For example tetrahedral

CH could have (3 x 5 - 6) = 9 normal vibrations but because of its high
4

symmetry, only 4 of these normal vibrations are distinct and 5 of them are

degenerate. Similarly octahedral SF6 could have as many as 15 normal

vibrations if each atom were different, but because of its high symmetry

we find that there are only 6 distinct normal vibrations, vI ) v2 , v3

v4 , v5 , and v. and the other 9 possible vibrations are degenerate, that

is they have the same value for v as one of these 6. As a final example,

the linear molecule CO2 should have (3 x 3 - 5) = 4 normal vibrations.

But two of these four correspond to bending vibrations, V2a and V2 b whose

frequencies are the same (V2 = V2b) , but whose planes of vibration

are at right angles to each other. Thus CO2 has only three distinct normal

vibrational frequencies vI , V2  v3 of which v2 is doubly degenerate.

The general method by which to determine the distinct normal

vibration of a polyatomic molecule are given by Herzberg (Ref. 10). We

shall assume here that they are known by consulting Herzberg's tables of

polyatomic molecular properties (Ref. ii) which list the fundamental

frequencies of the normal vibrations of most comnmonly known gaseous inol-

ecules. We shall use the subscript a to denote a general normal vibration

with fundamental frequency v and vibrational quantum numbers v 0 1 I

2 .... , B for another normal vibration with frequency vB , etc.
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(9) It can be shown, analogous to Eq. (3.65) for diatomic molecules,

that the parameter R2  in the case of transitions with Av = I within one

mn

normal vibration a of a polyatomic molecule has the general form (see

Appendix A):

I m v ni ( n + V n + I) hz 2
( m a n - -n 

01 na/

)IiT Va M

Av• = mn

polyatomic

(ya + V + hz 2  c(.3

a ~a a
•m fn 2f,cm• (3.83)

I6n'v M

Here v = - v = v since Av V - v is restricted to the
Ofmn (vm a YU a m an

value I. M is the effective mass of the normal vibration a if treated by

the harmonic oscillator model, and z is the first-derivative dipole charge

number* for the a vibration (see Appendices A and B).

The values to be used for the various M of a polyatomic molecule

depend in a comDlicated way on the masses and relative arrangements of the

atoms that make up the molecule. Similarly z varies considerably for the

different normal vibrations of different types of molecules. We shall give

expressions and tables for M and z for the five major classes of polyatomic
a1 a

molecules later on. For the moment we shall assume that they are known.

*We shall omit the subscript I in z from here on and write (zl)a =
for convenience.
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Now just like anharmonicity removed the Av = I selection rule for

diatomic molecules, the same occurs for polyatc-nic molecules. However for

polyatomic molecules we not only introduce the possibility of overtone tran-

sitions v - v Av = 2 , 3 , etc., the anharmonicity also allows so-
(am a•n

called "combination-band'" transitions ( v
\ m Pm Ym'•

in which level changes in several of the normal vibrations take place

simultaneously. The latter would be strictly forbidden if the vibrations

were purely harmonic.

By including first-order anharmonic corrections in the transition

element (see Appendix A), we find that for "overtone" and "combination-band"

transitions of polyatomic molecules one obtains:

m2 vin m•.•(v-vt )(R2) ( 8 &T2VhM njT Lic~ +Y #y
polyatomic m n

I V

1.6867 x 101 M 2 n (]Mmn mn mn vo (IV V nI + I)2 1, O cma

(amu)(cm"1) n

(3.84)

Here v is the fundamental frequency of normal vibration ca , v Is the upper

initial (final) and v the lower final (initial) vibrational quantum number
! en

of vibration a in the transition m--.n v is the upper initial (final)
Om

vibrational quantum number ol normal vibration 8 , etc. The parameter zmn

for a combination-band t-ansition we shall discuss later; for an overtone
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transition in a single vibration a t we have that zmn z . The transition
in a

U frequency vn in Eq. (3.84) is:

Vmn= (Vm V) v , (3.85)
at

while the parameter 6 = I, if V > v ,and 6 = -I1 if v < v . The
at m an a QWn Cin

parameters imnn Xmn and Zmn are discussttd in Appendix A and are defined by:

-2

x = in"x of IV - v (3.87)
mn rn0€ tn1'

( VM x)/2 (V 4/I22 (3.88)

m PiPin/in 2 IV Vl o Ir z /2Ve/2x /
-'IvIvI

aim an ai a

The M 1 x O and za of a normal vibration a of a molecule, may be obtained

by methods discussed in Appendices A, B•, nd C if experimental data are

unavailable. Tables of values for these parameters are given In subsections

3.3.2.1 through 3.3.2.5.

Equation (3.84) which is based on a first-order anharmonic

approximation is in reasorable agreement with experiment for first overtones

and double combination bands. However It predicts progressively less correct

values (too low) for triple and higher combinations and higher overtones.

Agreement is better if (3.84) is modified to (see Appendix A):
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(R1n) -.6867vio15 X - v 10- 15I M n' cm2
\MV )

polyat. (amu 1 -m Yn n

(3. 8 9a)

iv/- v + I ' z e

~i/ \ m an / 1
z mn =Vm VMX mnxm / 1/2 I1/2f1I (3.89b)

~M V~ (x) (IV - V

aIC a ml , y.9c

m nvi!+

=V'm vi) I

Like Eq. (3.84), Eq. (3.89) will reduce to Eq. (3.83) for transitions with

sIV a v s n I (i.e., a tAv. I transition within only one normal vibration c).
a? m ~n

Whereas for diatomic molecules the weights w . w . and connection
Vm Vn

fators, (cn b)casfe codn ter ymtypoete.Frnn

fnacor v(Cu equaled unity, for polyatomic molecules this is not the case

since some normal vibratons can be degenerate. To determine the degeneracy

of a normal vibration, symmnetry considerations play a vital role (Refs. 10

and 11). Normal vibrations in polyatomic molecules, like electronic excita-

tions, can be classified according to their symmetry properties. For non-

linear molecules, symbols A and B (with subscripts) denote in general that

the vibration is non-degenerate, while the symbol E is used for doubly-

degenerate vibratlons, and the symbol F for triply-degenerate vibrations.

For linear molecules, vibrations designated by Z are non-degenerate, while

vibrations designated II H , , ... are doubly-degenerate (Ref. 10). If
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we use the symbol dx to Indicate the degeneraCy of the normal vibration Of

of a pclyatomic molecule, we have:

dx I , if X = A ; X = B ; or X . (3.90a)

dx I , if X = E ; X = II ; X0, A ; = (3.90b)

dx 3 if X F (3.90c)

The weight w of a general vibrational level k of a normal vibration
alk

a with vibrational quantum number v is then (Ref. 10):•k

w= I if dx =I (3.91a)
a

w (v + I if dx 2 (3.91b)
alk Olk a

w1 2 - (1+ I (v01+ 2), i d = (3.91c)
ak 2\k ~k i

Note that we can combine (3.91a), (3.91b),, and (3.91c) iato the single

expression.

dX - 2 + + I( v + 2) 6(dX 3kv0 Ck C1

(3.91d)

where 6(x) is the Dirac delta function. Note that for the fundamental

vibration v I , Eq. (3.91b) yields wv= 2 = dX and Eq. (3.91c) gives

w 3 dx as they must of course.

a X
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For vibrational combination band transitions, the weights wm and

9.- Wv are given by:
n

wk (3.92)
"" v k _

where the product is over the normal vibrations 01 whose levels change in the

transition. The connection factor for the most general vibrational transition

is then:

C WVW w w (3.93)

For a transition within one normal vibration [ , we have simply (Cmn)vib

= W n according to Eq. (3.93).•m n

The emitted (absorbed) photon frequencies are of course v =
" ~mn

S(E- Ev)/h for a vibrational transition in a polyatomic molecule, where:
v5

E = +. - hx v v + (3.94)
k a k , a k

Here we abbreviate d . dx; the symbol v k is the level of excitation of

the normal vibration a in the general state k.

As an illustration, let us consider the transition v 2v in CO

3 2 2

Herev5 = I v v2 = 0 , v3  0 , v2  2. Since the v vibration (with fun-
m m n n 2

damental frequency v in CO2 is doubly-degenerate, while v3 is non-degenerate,

we have w w3 2  I x I ,and w w3 w2  I x 3 3.3 2 n 32Sm m nl n

iI ,.r102



Having determined what the general form of the relations for R2
mn

C mn w m and wn should be for polyatomic molecules, we next turn to the

problem of obtaining values for M , z , and x which enter into the
a CYa

equations for R2  . For the anharmonic constant x , there :s an analytic
mn a

relation that may be used if no other data are available. This relation is

(Ref. 16):

hv V (cm)
x = -- =3.099 x 10 -- (3.95)¢ 4Da D (eV) ' I

a Of
I

where D is the dissociation limit energy for the normal vibration a and

v is its fundamental frequency. For diatomic molecules Eq. (3.95) can be

readily applied but for polyatomic molecu,,- values for D are not always

available. Appendix C discusses ways of estimating D for polyatomic molecules.

As mentioned the parameters M , z , M , and z depend strongly
a a mn mn

on the molecular configuration and are best discussed on a class-for-class

basis. In general one finds that the frequency of the normal vibration a

can be expressed in terms of the atomic masses and force constants of the

molecule by a relation of the form (Ref. 10):

4rr;v2 (sec2  k (dynes/cm)M(3.96)S(sec-z (3. 96)
O•~ (9m) ,

For the simplest type of polyatomic molecule such as symmetric

triatomic YXY, there is only one component s for each normal vibration,

that is:
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k
4iT2v2 - ' (3.97)

M

This relation is identical to that for a diatomic molecule (Ref. 2), except

that there are three normal vibrations a = I , 2 , 3 for a triatomic

nolecule es opposed to only one for a diatomic molecule (Ma = MAB given by

Eq. (3.67) for a diatomic molecule). However for the slightly more complex

linear XYZ molecule, we have:

k k
2 2 -- 12

4rrv1 V + (3.98a.)

kll 
,k

- M M2 N

21 22 23

k k
42-2 2 V + 32 (3.98c)

3 M M
M31 32

Appendix B gives explicit expressions for k and M for a number of

commonly-occurring classes of molecules.

Values for the effective dipole charge z are shown in Appendices AOe

and B to be derivable from values z of the s components that participate

in a normal vibration via the relation:

c 
k 

114as

s ss Yas as e as
a _ -1/2 (k M )1/4(39)

Mas S asS
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where the e are unit vectors of the dipole directlon along the component

bonds and the y or +1 or -I depending on whether a component vibration is

stretching or contracting with respect to others (see Appendix B). The abso-

lute value in (3.99) is to be taken with respect to the vectors e., that is

IV!

We shall now briefly review values of M , x , and z for the

various ciasses of molecules as calculated according to the relations devel-

oped in Appendices A, B, and C and/or from data supplied by Refs. 2, 10, H1,

15, 16, and 20.

3.3.2.1 Linear Molecules (XY2 , XYZ)

In Table 3-7 some of the more common linear molecules are listed

9 . together with some of their vibrational properties. We can distinguish

between symmetric linear molecules (such as OCO and SCS) and unsymmetric

linear molecules (e.g., NNO, OCS, and HCN). Most linear molecules are tri-

atomic although four-atomic and more-than-four atomic linear molecules do

exist also. however as more and more atoms are present in a molecule the

chance becomes increasingly larger that the atoms form bonds with more than

just one or two neighbors thus causing nonlinear, planar, and three-dimensional

molecular configurations.

To obtain a convenient mathematical description of the vibrations

of linear symmetric triatomic molecules XY2 such as CO2 , or linear triatomic

molecules XYZ like OCS, the most convenient and satisfoactory mechanical

model appears to be the so-called "valence-force" model. In this model,

harmonic-oscillator stretching force constants kI and k2 (dynes/cm) are used
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to describe motions along the molecular axis for relative displacements of the

XY and YZ bonds, while angular or bending force constants k8 (dyne-cm/.adian)

are used for motions of the atoms perpendicular to this axis (Ref. 10, p.172).

In Appendix B, expressions are given for the normal vibrational frequencies

. 2 and in terms of these force constants, the atomic masses, and the

equilibrium atomic separations, based on the valence-force mechanical model.

It is shown there further how to calculate MN I M2 ) M3 ) z, , z2 , and z.

from these basic atomic constants. Appendix C shows how to get estimates for

the anharmonic constants xI ) x2 .and x3

"Table 3-7 summarizes calculated and/or measured values for v , x 1

M and z for the three normal vibrations of most common linear XY2 and XYZ

molecules according to the formulas given in Appendices B and C and/or data

supplied by Refs. 2, 10, II, 15, 16, and 20.

3.3.2.2 Planar Molecules (XY2 , XY3 )

Although other types exist, we shall consider here only planar

(nonlinear) triatomic XY2 arid four-atomic XY3 which are the most common

chemical formulas for molecules in this class. Table 3-7 lists values for

S, x 01 , M and z for the three normal vibrations of XY2 while in Table 3-8

values for the four normal vibrations of planar XY are given as obtained
3

from the general relations for these molecules developed in Appendices B and

C. Of the nonlinear XY2 group, H20 is probably the best known one, while

BF3 is the most commonly quoted representative of the planar XY3 group.
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3.3.2.3 Pyramidal Molecules (XY )

3

Of the three-dimensionally structured four-atomic molecules,

the pyramidal XY3 group represented by NH3 is probably the most studied.

Table 3-8 lists values of v , M , x , and z for the four normal vibra-

tions of a number of XY3 molecules which have been extensively investigated.

These parameters were calculated from the relations developed in Appendices

B and C.

3.3.2.4 Tetrahedral Molecules (XY4 )

The highly symmetric XY molecule represented by CH iýb another
4 4

well-studied three-dimensionally structured molecule. Table 3-9 lists values

of V , M , x . and z for the four normal vibrations of commonly-occurring
01 a of a1

XY4 molecules, obtained from the relations in Appandices B and C.

3.3.2.5 Octahedral Molecules (XY6 )

Values of v , M , x , and z for the six normal vibrations

of the very symmetric XY6 molecules such as SF6 and UF6 are listed in

Table 3-10. These parameters were calculated from equations discussed in

Appendices B and C.
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3.4 ROTATIONAL RADIATIVE TRANSITIONS

As mentioned earlier, rotational states and transitions in molecules

are best treated in five groups as follows (Ref. 16):

a. Diatomic Molecules

b. Linear Polyatomic Molecules

c. Symmetric Top Molecules

d. Spherical Top Molecules

e. Asymmetric Top Molecules

We shall briefly consider the pertinent transition r.lations for these five

classes of molecules in the order given.

3.4.1 Diatomic Molecules

For molecular rotation, the eigenfunctions to be used in Eq. (1.17)

are essentially associated Laguerre functions for the ideal rotator (Ref. 2).

For diatoniic molecules, the transition element can be shown to equal (Ref. 16,

pp. 20-24):

ii

R 2 dr2t - m + 1n .) , c 2  
,.(3. 100)

rn didLo1ic o (2J m l)(2J I)

where the efft.-t'tive dipole "length" d i, related to the permanent dipole
0

-oment of the nmolucule by:

d z.r (3.101)
0 e 0
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; (9 Here re is the equilibrium interatomic distance of the molecule XY , and z

is the permanent dipole charge. Measured or estimated values of z and re

(and therefore d) of various diatomic molecules and radicals are given in

Table B-3 of Appendix B.

Note from Table B-3 that all homonuclear diatomic molecules

(H2 , N2 j 02 , C12 , etc.), have a zero permanent dipole moment as one

would expect. Thus although these molecules do rotate and can possess

rotational levels J = 0, 1, 2. ..... , which can be excited or deexcited in

molecular collisions, they cannot interact (via a first-order electric-dipole)

with the radiation field and absorb or emit photons in a pure rotational

transition.

The parameters J and J in Eq. (3.100) are the rotational quantum
m n

( ) numbers of rotational levels m and n respectively. In contrast to vibrational
'.:

transitions, rotational transitions obey the selection rules rigorously.

These rules hold that for a rotational radiative dipole transition in a

diatomic mulecule:

[J = J - d = ±I 1 12
mJ n (3.102)m n

Since a rotational angular momentum of J units of hi can be oriented in

(2J * I) different directions in space according to the space quantization

laws (Ref. I), the degeneracies wr and wr of the rotational states m and
m n

n are simply;.

*Of course the total degeneracy of a ;wlecule at level k is equal to the
product w w w (see Chapter 1).

vk rk
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w =2J + 1 (3. 103a)r m

w =2J + 1 (3. 103b)
r nn

Furthermore since all wr states can connect to any one of the w states ;nr r
m rotn

transition with AJ ±1, we have for the connection factor Crmt that:

Crot =Ww w =(2J + 1)(2J + 1) (3.104)mn r r m n
m n

The rotational energy levels of a diatomic molecule are given by

(Ref. 16):

E jrot hc BeJ(J + I) - %e(v + J ) J(J + I) - D j 2 (j + I)j
.... )diatomic e

molecule

hc BJ(J + I) - + + ) J(J + I) , ergs ,(3.10.)

where.

B = h/(8n 2cI) , cm- (3. t06)

D 4B3 /v 2 
, cm (3 107)

e e e

a'e 6(x Bhe/v )/2 6B/v , cm (3.108)
ee e e e

Here B is the main rotational energy constant often called "the
C

rotar.ional constant" which is related to the molecular moment of inertia
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tl,• .. , . . , : • ; • : • -. , - .t , °. J . . • . •. , . . . ...... .. . . . . . . • ,

F!

(0) 1e (gram - cm2 ) via (3.106). The much smaller constants ce and D aree e

corrections of the main rotational energy for respectively the change in the

average moment of inertia due to vibrations, and centrifugal stretching. The

parameter ve (cm ') is the fundamental vibrational frequency of the mol-3cule,

v is the vibrational energy level quantum number, and x is the anharmonice

constant which were all discussed in the previous section. Values of the

rotational constant B for some selected diatomic molecules are listed in
e

Table 3-I1. Table 3-I1 also lists values of d for these molecules.
0

If we define J to be the larger of Jm and Jn (we denote this by

J = sup(Jm, J)), Eq. (3.100) can be rewritten with the aid of Eq. (3. 102)

in the simple form:

(R2) d 2  J c

mn rot o (2J + 1)(2J 1) cm, (3.109)

diatomic
S (J = sup(Jm, Jn) )

or:

Stun) mmn no )r J d' cm' (3•.1O)

diatomic(J = sup(JmJn) )

Sn.

and:
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TABLE 3-iI. ROTATIONAL CONSTANTS AND D:POLE LENGTHS OF SELECTED

"i~~j I . DIATOMIC MOLECULES (Refs. I, 16)•

Rotational Vibrational
SMolecule Constaut Correction Constant Dipole Length

Mo-l u I -I do (Angstrom = -8 cm)
IB (cm') (cm)0

e C

H2  60.800 2.993 0

HO 18.871 .0.714 0.3456

HN 16.65 0.64 0.2115

HF 20.939 0.770 0.3789

HCA 10.5909 0.3019 0.2249

HBr 8.473 0.226 0. 1707

HI 6.551 0.183 0.0916

DO 10.0202 0.295 (0.3272)

CO 1.9313 0.01748 0.0233

CS 0.8205 0.00624 0,4123

SI CN 1.8996 0.01735 0.0800
CH 14.457 0.534 0.3040

CD 7.808 0.212 (0.2815)

N2  2.010 0.0187 0

NO 1.7046 0.0178 0.0319

NS (1.0480) (0.01475) (0.3599)

CIF 0.51651 0.004358 0.1832

BrF 0.35717 0.005214 0.2685

ICA 0.11416 0.000536 0.1352

KCA 0. 12zo 0.0000756 2.138

I.4,566 0.01579 0

j F2  (0.8618) (0.01627) 0

C. 0.2438 0.0017 0

* 4NOTE:

The most abundant isotopes are assumed for the atoms in each
moiecuie. Values in oarentheses are estimates. All values are

for the electronic ground state of the molecule.
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rot
C (2J + 1)(2J 1)3.11mn
diatomiic

(J sup(J, )) d/

Note that we could also have taken our reference transition as the

m n

d' cm' 112)

0 0

nd C woul hav to e de indas:mi

rot and woud hae tobe dfine as
mn

tro = (3. 113)
mn
diatomic

(i sup(Jm~J)j I
The advý!-.tage of this latter approach is that R15I constant, while

all dependencies on J (and thus v) reside in the connection factor C rot

mnn

rot7

Ofcus hscil osntrprsn h u falpsil rn

Omn:



-he transition is J I J 0. We shall distinguish between the twok~jIII n

rot
definitions for R2 and C by using the subscript o as indicated. S is

Inr mn mn

of course the same for both, that is:

( ) Crot R2 Crot R2 (3.114)
mnrot mn mnrot mn mnrot

Note that in contrast to the vibrational transitions which depend

on the vibrational constant v , the "bare" transition elements R2 and S0 mn mn

of rotational transitions are independent of the rotational constant B
e

Only the parameter d or po is needed.

0 0

For symmetric diatomic molecules such as 02 whose permanent electric2.

dipole moment p. 0 , the rotational quantum states (populated via collisions)

might still radiate via the weaker second-order magnetic dipole interaction

with the electromagnetic field, if the total electron angular momentum ot

the molecule including electron spin, Q 1 0. The condition Ci #0 occurs

for most diatomic molecules only in electronically-excited levels. There

are a few exceptions however such as 02 , whose ground electronic level is aF2
3 level, for which =

Provided then that Q V 0 , rotational transitions can take place
via the magnetic dipole moment MD or magnetic dipole length d a /e
via orD M.D. M. D.

which is approximately giben by (Ref. 6).

*Other molecules for which Q 1 0 in the ground level are NO , NO2 , and

CUO However these molecules can radiate via the stronger electric dipole

interaction of course.
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-~re
d.. -n r e cm (3.1 15)Mi. D. hc e 274.06

The transition, parameters (R2 ) and (Sm for magnetic dipole transitions

are then simply given by Eqs. (3.109) and (3.110) with d2 replaced by d 2
0 M.D."

By comparing (3.115) with (3.101), note that a magrnetic dipole transition acts

like an electric dipole transition with an effective permanent dipole charge

z of:0

TTe 2

(z) .0.00365 (3.116)

effective

A magnetic dipole transition with the va:ue (3.115) can take place

for 02 only for the isotopic combination 016018 or 0 7601. For a homonuclear

diatomic molecule such as 016016, a new selection rule arising from nuclear spin

forbids transitions between two adjacent rotational levels (Ref. 2, pp. 130-139).

We shall discuss this situation again in Chapter 4 in more detail.

3.4.2 Linear Polyatomic Molecules

Rotational transitions in linear polyatomic molecule, are quite

similar to those occurring in diatomic molecules, except for one additional

complication called "L-type doubling." This effect is caused by the fact

that in a linear molecule, the doubly-degenerate bendi9g vibration (usually

denoted v for triatomic molecules) can vibrate either in a plane perpendic-

ular to the molecular rotation axis (the rotation is end-over-end) or

parallel to this axis. In the former case an effective Coriolis force

exists if the molecule is rotating while in the latter case this Coriolis

I19
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(.. force is zero (see Ref. 16, p. 31-34). As a result, rotational transitions

for a molecule that is vibrating in the bending mode are slightly different

for the parallel and perpendicular cases and this lifting of the degeneracy

causes the "2-type doubling" of rotational transition frequencies.

Not only are rotational transition frequencies slightly shifted

(doubled) when the bending vibration is present, but the transition rate

reiations and selection rules are also effected. If the bending vibration

'b (usually vb v2 for triatomic linear molecules) has quantum level vb

(where vb = 0 1 , 2.....), the effect of the Coriolis force is to

introduce another set of quantum numbers A, where:*

= vb , vb - 2 v• b - 4 . ...... . - vb (3.117)

The transition parameters S and R2  for transitions with AJ = i - dI I=
mn mn m n

are then (Ref. 16, p. -4):

(m) (J 22 ) d, cm2 (3.118)Stnrot= o

linear mol.
(J = sup(JmJ) ; = I)

and:

*This quantum number A should not be confused with the quantum number I for

the orbital momentum of an electron.
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r'

J2 d0
mn rot J (2J + 1)(2J - I) cm2  (3.119)

linear mol.
I(J = sup(Jm,Jn) ; AJ )

while for AJ = 0 transitions which can also take place (see below) we have

(Ref. 16, p. 34):

S 122)2J )d cm2  (3.120)Smn rt ) ý-j -I o

linear mol.
(j sup(Jm, Jn); A= 0)

and:

R 2 (d2 0

(mn rot i (J- 1)(2J + ) cm2  (3.121)

linear mol.
(J = sup(J, J) ; n = 0)

The weights of rotational levels m and n are the same as for

diatomic molecules, that is:

(w rk) Jk + (3.122)
Orot

linear tool.
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( ) and also:

,rot\
mol WW %A (2j + 1)(2J + 1)(3.123)

If we define parameters (R2 and Crt again (see Eq. (3.112), we hav.e:
Omn) Omn

(R ) d d2  cm 2 , (3.124)

linear mol.

and:

j 2(.2)
(Crot)(-15

mnJ
linear mol.

(j sup(JJ 'i ij )

orot A2 (2J 1 ) (.16

(J 0 ni =( 0)(-16

rhe selection rules for rotational transitions in linear molecules

[are (Ref. 10):
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* ). J --. m " Jnl -- t

=0 nI=i

{o •t o (3. 127)

or:

m n ±

A= ± ; (J = 0)-,f (J = 0) (3. 128a)

SAJ= J J = ±1 ; AJ= 0 weak)

A= 0; A, • 0 (3.128b)

In addition we have always that J ýt A. Note when vb 0, we have A, = 0, and

all transitional relations are identical to those for diatomic molecules.

The permanent dipole moment p 0 or length d of a linear molecule has

been measured for a number of species. Values of some selected linear molecules

taken from Refs. 15 and 20 are listed in Table 3-12. If values of p° or d are

not availabir. but the values of z and r are known for the diatomic components
0 e

XY and YZ of a triatomic linear XYZ molecule, an estimate of d for the XYZ

molecule may be obtained via the relation (see Appendix B):

1/2 xY (Z°)xY - Yz(Zo)YZd : 2Ti~v I M ) 1/4 1 /4
L (kl )1  k 12M12 )

1/2 ~XY(ZXY .Y(Zoy 1Z: 0.0155786 (vlM1) 1/2 1/4 cm
(kII [ 11) (k 3 M12 ) 11 4 J

(cm )(amu) (dyne/cm)(amu) (3.129)
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where A and A are the equilibrium separations of atoms XY and YZ in

the molecule XYZ (in units of cm) and (Zo)xY and (Zo)yz are the permanent

dipole charges of the molecules or radicals XY and YZ, that is:

=y e'I (Po/re)XY (3.130)

(ZO)yz= e- (Po/re)y (3.131)

which are tabulated in Table B-3 of Appendix B for a large number of species.

The parameters Mi1 and M12 in Eq. (3.129) are given by (see Appendix B)'.

•2 •MXMY
H , amu , (3.132)

I(mx + my) I ---i-A')

2M YM
Vzam (3.1,33))

12 (M M - -- A-)

where the constant A is given by:

S4kk(Mx + my + Mz) "XHy"z; A - (3.134)
LI(X+ Hy) "Z "3 " + HZ) MX12

and MX , M ,Z are the atomic masses (in amiu) of the atoms X , V , and Z.

The force constants k k I and k12  3 dynes/cm) are tabulated i

125



Table B-4 of Appendix B for a number of linear molecules. Finally we have

. (see Appendix B):

= [M7;/ 2 + M12 J (3.135)

The reason why the (zo)xf and (zo)fz have to be weighted with

vibrational pararieters is that the vibrational frequencies are much higher than

the rotational frequencies, so that as far as rotational transitions is con-

cerned, quantum-mechanically-calculated values of (Zo)xy and (zo)yz are needed

which are averaged over the vibrations. That is in the quantum-mechanical

expression for the transition matrix, we must write:

(R2\ = v f i r rot z T v T v d=-
omn ot n m

n m

zV Y dV J r YJ d, (3.136)
v v J rot J J

(If n I ) II Y

n m)

where vI refers to a vibrational !evel of the first normal vibration v,

the YVlk are the vibrational eigenfunctions of the vI vibration with the

rx•lecule in state k , and the Y are the rotational eigenfunctions of the

ni lecule in state k.

In the last member of (5.136), the first factor involving the

vibrational eiganfunctions and the dipole charge z introduces weight factors
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9 involving the vibrational parameters k, k and the atomic masses Mx , My

and M•Z if one employs the composite dipole charge method as explained in

Appendix B. Although in Appendix B, the composite dipole-charge method was

developed primarily for the treatment of vibrational dipole transitions, the

same techniques can be applied for the construction of the permanent dipole

charge z° needed in rotational dipole transition calculations. However whereas

one needs to calculate three derivative dipole charges z1 , z2 , z3 for the

three normal vibrations of an XYZ molecule, for the rotational transitions

we need only one constant z For the XYZ molecule the calculation of this0

z value via the composite dipole method involves the same weighting constants

as that involved in the calculation of z for the vibrational derivative

dipole charge of the first normal vibration v as was illustrated in Appendix B

in the discussion on OCS.

Note from Table 3-12 that the permanent dipole moment of symmetric

triatomic linear molecules such as CO2 (OCO) and CS2 (SCS) are zero as one

would expect from Eq. (3.129). This means that these molecules cannot absorb

or emit a photon (in the microwave region) in a pure rotational transition.

Of course this does not prevent a photon from being emitted or absorbed (in

the infrared) in a vibrational transition which is accompanied by a rotational

transition of a symmetric triatomic molecule like CO2 (see Chapter 4), since

in general the vibrational first-order-derivative charge z z°

Though we shall have occasion to discuss rotational energy levels

more fully in Chapter 4, we give here for completeness the expression for the

rotational energy of a linear polyatomic molecule (Ref. 16) with quantum

number J:
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(Ejlrot  = hc [BvJ(J + I) - - DvJ(J + I) - • 2]~~I ... 4 "lnear
-•. molecule

; hc dBJ(J + I) - 1 ], erg , (3. 137)

whe re:

•: B = B - V + - o2 (v2 + I) - a3(v3 + (3, cm (.138)

The centrifugal stretching constant D for linear polyatomic molecules depends
V

in a complicated manner on other molecular parameters (see Ref. 16), but

fortunately it is small so that the second term in (3.137) can usually be

ignored. We have also neglected the small "A,-doubling" energy level splitting

of each rotational line, which equals (Ref. 16):

hcB2

6Ej J-doubling 1.3 (v 2 + I) J(J + I) , ergs (3.139)

Here v and B are in units of cm
2 e

In Table 3-12, values for the rota-ional constants B (cm-) and al

e

a2 , a3 (cm l) for selected linear polyatomic molecules are given, taken from

Refs. 2 and 16. If measured values for atI , a'2 , and C3 are not ivailable,

we may esti•iate these paranmters by the equation:

of. 6 cm (3.1402)
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in analogy with (3.107) for diatomic molecules. Here we take values for x0
and v, from Table 3-2 in the previous section.

Note again that as for the diatomic case the "bare" rotational

transition elements R2 and S for linear molecules are independent of the
mn mn

rotational constant B Of course when we consider broadening and spacing of
V

rotational lines in a vibrational band which we shall take up in Chapter 4, B ,

does play an important role.

S3.4.3 Symmetric-Top Molecules

Symmetric-top molecules are basically pyramidal in their structure

and rotate about the pyramid height coordinate as axis. Typical molecules in

this class are XY3 molecules such as NH3 and AsF 3 in which the Y's are in one

plane at the corners of a triangle and the X atom is some distance above this

plane equidistant from the Y atoms and thus at the top of the pyramid. Other

symmetric tops are formed by XY3 Z such as CH3 F and CF3 CA in which XY is similar

to NH3 , and the Z atom is stationed above the X atom along the height coordi-

nate of the pyramid formed by XY3 . Reference 16 lists other molecules of

more than five atoms which are symmetric tops as fat, as rotation is concerned.

Rotations of symmetric-top molecules are specified by two quantum

numbers J and K (Ref. 16, p. 48 ff), J being the quantum number for the total

rotational angular momentum of the molecule which is given by:

P2 = j(J + I) h2 /(4Tr 2 ) (3.141)

and K quan-izing the z-component of the angular momentum (taken to be along

the molecular axis) given by;
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P2  1(2h'/(4 4 2) (3. 1.'2)

Here:

p2  p2 -- p2 + pI(3. 143)

x y z

':or a given total rotational angular momentum having quantum number J, the

quantum number K can take on an~y one of the values:

K J J -I..... -J (3.144)

The rotational energy levels for the symmetric-top rotator with

rotational quantum numbers J and K are to first-order (Refs. 10 and 16):

/E rot hc6 (1 + 1) + (A -a) K' -IA

lK)Symm.-Top

Molecule

-2 AIKI ~ ±.;ergs (3. j45)*

where B and A a.-e rotational constc.,nts defined by:

h__ B d m[ I B cm ~ (3.146)

*We follow Herzberg's nomenclature. Townes and Schawlow prefer C in place of A.
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( d.

A h 1 o• vB + , cm (3.147)
8- 2 CIA

Here I and I are the two principal moments of inertia of the symmetric-top,
A A

and the terms -with 0 and a0 are corrections for changes in these moments of

inertia if vibrations s of excitation level v and degeneracy dB (d I or 2

usual ly) are present.

The term with the parameter in Eq. (3.145) arises only when a

degenerate vibration 8 (dl i I) is also excited together with the rotational

excitations. Such a degenerate vibration possesses a vibrational angular

momentum which gives rise to a Coriolis force (see Ref. 10, p. 403 ff) and

which interacts with the pure rotational angular momenta. For the most common

symmetric-top molecules such as pyramidal XY3 , only doubly-degenerate (specius

E) vibrations can occur. For XY for example, the v and v vibrations are
'93 34

each doubly-degenerate, and it can be shown that (Ref. 10, p. 404):

= B0 - (3.148)$-•" ~~C3 + 14 -2A I(.18 •
, ~~(Pyramidal XY3).

3 'B

For planar XY with 'A = 2 1 this yields:

+ o0 or ý -C (3.149)

(Planar XY3)

The other two normal vibrations of planar or pyramidal XY3 , vI and v2 , are

non-degenerate (see section 3.3), and therefore CI = C2 = 0.

Similar analyses (Ref. 10, p. 402) show that for planar X molecules

3

(triangular) one has for the one degenerate v2 viF. dtion that:
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CJ2 = i,(3. 150).i

(Planar A3) 3)

while = 0 for this molecule since the v, and vibrations are

non-degenerate.

The parameter I. in Eq. (3. 145) takes on the values:

A =v, vB - 2 , vB - 4 1...... I , or 0 (3.151)

0i=1) (i=2) (i=3) (i=i)

For a single excitation of a degenerate normal vibration, the sum Z(± 2.CB)

is simply ± , but if for example 2\3 is excited in XY3 , we have 23 2

and 2 0 , and we get for the sum ± 2C and 0. Thus the sum term yields

three different values and therefore the energy given by (3.145) has three

sublevels in this case.

If two degenerate normal vibrations are singly excited for example

I' V + , the sum term in (3. 45) has the values +(•3 4 and ±(•3- •4)

resulting in four sublevels, At higher levels of excitation v$ of a clegen-

erate normal vibration v3 , the value of k is expected to change somewhat,

that is C - • 3 (v3) (Ref. 10, p. 406). However this change should be of

second-order and we shall not consider it here. Excitation of the higher

"levels of the non-degenerate vibrations do not influence the C values in

any way.

Values for r are best obtained experimentally although they can be

calculated in principle from the molecule's vibrational parameters (Ref. I0).

For XY and ZXY3 molecules for example Ref. 23 gives:

*a Ic132
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(I-cosol) My
Ci- o~)M (3. 152).Q~) 3(XY3) = 4(ZXY3) + (1 s- cs) M

where a is the angle YXY in the molecule (see section 3.3). Since C4(XY3) is

related t via Eq. (3.148)' C can also readily be obtained from (3.152).

One other condition that mus: always be satisfied by .C is that 0< j l.

The rotational energy levels and their splittings due to vibrational

Coriolis forces do not directly effect the bare rotational transition elements

R2 . We will need the full energy level relations in Chapter 4 however andmn

gave them here for completeness and future reference.

In Eqs. (3.146) and (3.147), 1A = I is the moment of inertia about

the molecular axis (pyramidal height coordinate), and IB = Ix = Iy is the

moment of inertia about an axis perpendicular to this coordinate. Centrifugal

stretching effects in Eq. (3.145) which may be expressed by a term

-D J2 (J + 1)2 -D J(J + I)2- D KK were neglected since this term is usually

-_ much smaller than the other vibrational correction terms.

The eigenfl.:nctions for the symmetric-top rotator are given by

* modified hypergeometric functions (Ref. 16), and it is found that the selec-

tion rules for pure rotational radiative transitions in symmetric-top molecules

are (Ref. 16):

Pure Rotational Transitions

6J = 0 z I (3. 153a)

AIKI a0 (3.153b)

S(+1 - --- (-)(3.15S3c)
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Sk_.) The selection rule (+)--(-) states that only transitions between states

whose wavefunctions have opposite parities are allowed. That is (0) refers

to a state with an overall wavefunction for which !Y(•r) = 'i(r) while (-)

refers to a state with an overall wavefunction for which •/(-r) = -T(r)

where r is the spatial position vector r fihe selection rule (3. 153c) is

only important for NH3 , which can oscillate between two mirror configurations

in which N is "above" or "below" the H3 plane. For most oLher molecules this

so-called "inversion" is so slow (half-life years) that we may ignore it,

7 and in this case the selection rules (3.153a) and (3.153b) automatically

cause (3.153c) to be satisfied.

From (3.145) it is clear that all rotational energy levels (JK)

including states with K - 0 (see Ref. 10, p. 403) are doubly-degenerate

since the states with quantum numbers tK and -K have the same energy. Since

these two states have opposite parity (+) and (-), it is clear that each

rotational energy level is composed of two states, one with (0) parity and

the other with (-) parity. This means also that a radiative transition with

:AJ 0 and AIKI 0 is allowed, in addition to AJ = ±1 (and \KI K 0)

transitions.

For pure roLational transitions (i.e., no changes in vibrational

levels), the (microwave) frequencies of the emitted or absorbed photons are

according to (3.145) and (3. 153) given by:

rotro
m("nnIh )(E JK) - (EjK) 2 c BJ ,Hz

'-•'ý I l n

-; ~J sup(Jm dnjill n

2 BJ cm 15. S4a)
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Sxrot

(Vmnnro=0 (3. 154b)

(Aj = 0)

The degeneracy or weight of a rotational level m of given value IK I

is:

wr(IKIn, J I (2Jm + l) 2 - 8(K) I H(Jm " jKM) , (3.155)

since there are (2J + I) different values of K for each J. Here 8(x) is the
m

Dirac delta function and H(x) the Heaviside unit step function defined by:

6(x- 0) 1 ; 6(x 1 0) - 0 (3.156a)

H(x 0) I; H(x< 0) = 0 (3.156b)

The factor 12 (K)I is I for K 0 and equals 2 for IK IŽ I to account form Inl IT

the fact that each nonzero K value is doubly-degenerate. The factor H(J - 1KmI)the fac Ithattts ihJ ?I

insures that for given I only states with J > IKn an exist.mm m

The transition element R2 for rotational transitions with
mn

n I AIKI = 0 is (Refs. 10 and 16)"

2)rot -d2  2 K2

mn o J(2J + 1)(2J- I) ' cm ' (3.157a)

'.ini
J = sup(JJ)
IK I K- I 1 - K

• mn

where d is the dipole length of the molecule in charge-cm as before. For
0

transitions with J m J J and jIKI 0 , which are also allowed according

to (3.153), the matrix element is:

135

Low



K 2i

(R 2 )rot d 2  K2  
157b

j-.\ mn o J(J + 1)(2J + I) cm2  (3.157b)

AIKI 0)

This latter transition involves no emission or absorption of a photon however

according to (3. 154b) and only causes the molecule to change its value of K

to -K.

rotThe transition strength S and connection factor C for AJ = ±1
mn mn

are:

/j2  2
mnrot d 2  K cm 2  (3. 158)
mn

J = sup(JJ)

AJ = ±1K; JK - K K

Cmn (2Jm + I)(2Jn + I)= (2J + 1)(2J- I) (3.159)

sup(J'J))

Note that if we want to calculate the spontaneous rotational

emission rate for example from state m to n, we must use the parameter

SPin/w r (Jm ) and not s r %t/ (Jm Km). If we consider each rotational level
•,.mn r m mn r m m

to be specified by (JK) rather than J (with K as states, see Chapter I,
p. 3), then S roL must be defined by:

mn

0tn L 2  (J 2 
- K(3. 60)

J suP(JJ )
K IN I 1K I,

I II n

in order that (srIot)n /w (JK) ( rot) 1/2 be the proper matrix parometer

to be used in the expressions for cross-sections and rates for transitions

.1- 11 or exJip . I

136



(9) The emitted photon frequencies given by (3.154) and governed by

the selection rules (3.153) only apply for pure rotational transitions. If

the main transition is vibrational or electronic, and the rotational change

accompanies it, the selection rules (3.153) are changed to (Ref. t1, p. 414):

a. (// Band)

AIKI 0 ,J 0 ±1 , if K # 0 (3. 161a)

A.IKI 0 ; AJ ±1 , if K = 0 , (3. 161b)

if the direction of the electronic or vibrational dipole vector e (see

section 3.3) is parallel to the symmetric-top axis, and:

b. ( j_ Band)

AIKI ±1 J 0, ±1 (3.162)

if the electronic or vibrational dipole vector e is perpendicular to the

symmetric-top axis.

If the vibration vector e (see section 3.3) has components

along as well as perpendicular to the symmetric-top axis, vibrational/rota-

tional transitions obeying both selection rules (3.161) and (3.162) can take

place.

It Is clear that for rotational transitions accompanying vibrational

(and/or electronic) transition, the pure rotational energy difference between

upper level m and lower level n will no longer be given by Eq. (3.154)
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because of (3.161) and (3.162), and the fact that the sum term in (3.145) has

in general different values for a different upper and lower vibrational level.

Thus we have for a transition with Av 1 0 and/or AA 1 0 according to Eqs. (3.145'

and (3.161) for the parallel (//) and perpendicular (C.) bands:

P (- sign) and R (* sign) Branch ; I~JI ; J sup(J, J)

(rot) vib/ec 2
1K! = ) + 25J - ABJ 2 - (AA- AB)K 2 - 2Ac IKI , cm( 3(K =IK .I =IKn!) mn3.6ai

ro vib/oc 2
=v e - 2BJ - ABJ2 

- (AA - AB)K 2 + 2AA¢ IKI +

(K sup(IKm,IKs)) mn

nn n

Q-Branch ; J IllJ J

vib/• - tABJ(J+ I) - (AA - AB)K 2 
- 2 IKI , cmt  3 6c0

ýK O)

Srot) vvib/e -C LBJ(J-I) - (AA - AB)K 2 ' 2AA IKI

(K sup(! ,l IK n1K ))

n nn
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Heevvib/eicHere is the frequency difference of the upper (m) vibrational/electronic
mn

level and the lower (n) vibrational/electronic level in the transition, and:

AA A(vn,An) - A A -A, cm-l (3. 164)

m n mn

AB : B(vnA) - B(v MAm) Bn - Bm cm'l (3.165)

B = •[Bm + B] BnB (3.166)

-11

AA A ( ) An( i~n c (4.167)

We shall need Eq. (3.163) later in Chapter 4, and give them here for

completeness. Note that usually Bm- B(Vm)Am) t Bn B(vnAn) and An- A(vmA) )

SAn - A(VnAn) so that the approximation B sk B i B in (3. 163) is u.ally good.

However terms that contain the difference of B and B or A and A can of course
m n m n

not use this approximation. Also note that for transitions between non-degenerate

vibrational levels, the last term in (1.163) with the summation over the Coriolis

constants vanishes.

Table 3.13 lists rotational parameters B and A and Coriolis constants

C3 and C for some selected XY3 symmetric-top molecules.

1he rotational dipole moment pj° or dipole length d p /e for

symmetric-top molecules are also listed in Table 3-13. If a value for P± and thus

d is not available in the literature, one can calculate one via the composite-

if I 0dipole method analogous to the lilsutration given in the previous subsection for

linear molecules, using the proper vibrational weighting parameters discussed in

Append'x B. We shall not elaborate on this method further however, since for most

molecules of interest a measured value for P and thus d 1- available.
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TABLE 3-13. ROTATIONAL PARAMETERS OF SOME SELECTED SYMMETRIC-TOP
MOLECULES (Refs. II, 14, 16)*

Rotational Rotational Coriolis Constants Dipole
Molecule Constant Constant Length d 0

XY3 B Ao

(cmI) (cm ) C3 C4 (Angstrom = I08 cm)

AsH 3.7232 0.0416
3

AsF 0. 196i 0.5393
3

AsC, 0.0716 0.3311
3

CAF 3  0. 1249

NH 9.9443 6.196 0.06 -0.26 0.3061
3

ND 5. 1369 3.1555 0.20 -0.36 0.3061
3

NF 3 0.3563 0.0489

PH3  4.4523 3.93 0.01 -0.43 0. 1208

PF 0.2608 0.2145

3

PC, 0.0873 0. 1624

PBr 0.0332 I
SbH 2.9354 0.01 -0.48 0.0250

SbC3 0.0585
3 C4 10 C

•5 •

CH F 0.099 (-0.51) 0.28 0.3852
~ I 3

CH CA 0.443401 5.087 0.100 -0.273 0.222 0.3894
3

CH B 0.319160 5.082 0.049 -0.229 0.169 0.3769
3 r

CH I 0.250217 5.109 0.059 -0.240 0.206 0.33"3
3

*The molecules are assumed to be conposed of the most abundant isotopif.
atoms.

**iThe rotational constants B and A listed are for the ground vibrational
and electronic levels. For the higher levels, a and Aa values are
needed (see Eqs. (3.146) and (3.147)) which may found In Ref. 11 for
some molecules.
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3.4.4 Spherical-Top Molecules

Spherical-top molecules are similar to symmetric-top molecules

except that the principal moments of inertia I = I and therefore B = A

in all the relations that pertain to the symmetric-top. For the most general

case we have for the rotational energy levels (Ref. 10):

E )r ot hcBJ(J + 1) +

Ej spher.-topi molecule

.•:,• / + hcBCJ + I1C

+ 0 (0) cm (3. 168)
.. ~- hcBJ (-

where:

B a v + (3.169)
8-r 2 cI•• IB 2

and where we have three sublevels for Ej designated by (+%, (0), and (-).

Here, as before, the ot in Eq. (3.169) give corrections for the aver¢:ge moment

of inertia IB in the presence of vibrations ý of level vB and degeneracy dB ,

while the splitting into three sublevels with the C factors a.ises from

Coriolis interactions of the vibrations D on the rotations.

Spherical-top molecules are primarily represented by tetrahedral

XY and octahedral XY molecules discussed In section 3.3, whose normal
4 6

vibrations and degeneracies are as follows.
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XY4 XY6x4  x6

Normal Vibration v . VI V2 v3  V4  V1  V2 V3  V4  v5  v6

Degeneracy d I 2 3 3 I 2 3 3 3 3

Symmetry Type A E F2 F2 Alg Eg F I F 2u F F2ufu
Since the v vibration of both XY4 and XY6 is non-degenerate, we have j

0, that is:

=( = 0, for vibrations V v V V (3.170)

Also for both XY4 and XY,6 we have for the combination bands vv v3 + V lvI

VvV 4 + I V I \=\3 +v2V2', andv = V 4 + v2 V2  (Ref. 10).

- ( exactly for v = v3 1v \j I (3.1 l7a)

C3 approximately for vv V3 + v V (3.171b)

and.

I exactly for \v= v4 + V,\; (3.172a)

approximately for V V 2\ + ; (3.172b)

Here v = 0 , I v 2 ..... of course.
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-i¸ •, k • , -: : ....-;; -. '*1- •. : i

Q) We have further (for both XY4 and XY6) the relations (Ref. I0):

•3"4- 2 ' (3.173)

and:

approximately for v (3.174)

approximately for vv 2 (3.175)

- approximately for v (3.176)C =-• (C3 + C4) 4 "T prxmtl o v 3 + v4 3 ,• ..

There are additional -vibrational Coriolis perturbations and energy shifts

(. ) of the rotational levels when the vibrations v indicated in Eqs. (3.171b), ,

(3.;72b), (3.174), (3.175), and (3.176) are present. These additional perturba-

tions are discussed in Refs. 24, 25, and 26. For • values of other combination

or overtone bands not listed above these same references should also be consulted.

For XY4 , Jahn (Ref. 23) predicts for the Coriolis parameters and

the approximate relations:

S 4My (3,177)
C3  3Mx + 4My

(XV4 )

3MX 4My

C4 (M +-4v (3.178)
(xY4 )

where and M are the masses of atoms X and Y.
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For XY it appears that similarly:

6

6My
- 2 Mx +6 Y (3.179)

(XY6 )

and:

;,.M 2t -,6My
S 22 + 6My) (3.180)

(XY6 )

which seem to agree with Claassen's experimental results (Ref. 27) for

UF6 ((•3)expt 0.24 ± 0.07 ; (Eq) (3.179) 0.193), and with C derivable

from Hinkley's data (Ref. 28) on SF6 ((C3)expt = 0.673 ; (C3)Eq. (3.179) = 0.640).

The selection rules for rotational transitions, with or without

accompanying vibrational transitions, are (Ref. 10):

n 0 , 0 1 (3.181)

and:

S[A~tot) Atot)

(E (E (3. 182b)

•..7;--•, !• F ot Ftot)

.,•.,..•,•,(F )F.--w (3. 182c)

The selection rule (3.182) states that in a transition, rotational levels of a

molecule whose initial total symmetry is of type X (X = AEF) can only combine

with those rotational levels in the final state of the molecule which cause the

total symmetry to remain of the same type. By "total" symmetry type we mean

here the symmetry type of the combined electroniz, vibrational and rotational

wave function.
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() For v'ibrational/rotational transitions between a triply-degenerate

vibrational state (F) ad the non-degenerate vibrational ground state (A)Vivib i

the combined restrictions (3.181) and (3.182) give the selection rule (Ref. 10):

j - J+1 , ()--.()(3. 183a)
(F)(A)i

"(F) vib - (A) vib = 0, ()~-.-o 3 8b

J(F) Jb- (A) ib - (±'.--() ,(3. 183c)

wiere (0) , OY and ()refer to the sublevels of Eq. (3.168).

The selection rules (3.183) restrict the allowed photon frequencies

to the values (Ref. 10).

(a) P-Branch (J ~ - ()ib A

(b Qnrac (F v(F vib b

rot vib/elc( -B)J+B -)J(. 8)n 0mn n m n 2BmC (Bn Bm J

ni n

b) Q-B-nc (J J()-n A

-i -v -



4 4

(c) R-Branch (J - J n J(F).b J(A) vib +

V rot = vib/elc +(B + B 2B )J - (B- B j
mn 0 m n mm n m

J= sup jm• jin) mn

J = J + 1 (3. 184c)m n

elc/vib
Here av is the difference in the vibrational and/or electronic energy

level of the molecule.

In Table 3-14, rotational constants (B values) and Coriolis

parameters of some spherical-top XY and XY molecules are listed. The values

4 6

for B can only be obtained from infrared vibration/rotation transitions, since

for all spherical tops the permanent dipole moment po = 0 , and thus pure

rotational transitions (in the microwave region) do not occur. Thus radia-

tive transitions of the rotational states of spherical-top molecules only

occur when a vibrational or electronic/vibrational change also takes place.

As we saw in section 3.3, only the dipole charge for v and v

vibrational transitions of XY and XY are non-vanishing and hence most radia-
4 6

tive transitions of these molecules involve the v3 and v4 vibrations, or

combination bands in which v3 and v4 participate. The Iransition strengths

S for such transitions are of course determined by the vibrational value
mn

(R2 n) . The effect of the simultaneous rotational changes in these vlbra-
mn vib

tional transitions will appear only In the broadening function for the

transition and will be taken up in Chapter 4.

The statistical weight of a rotational level of a spherical-top

molecule is (Ref. 10):
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I '

w (2J + 1)' (3. 185)
rj

spher.-top
molecule]

which is different from linear and synmnetric-top molecules. The connectiun

factor is:

CrOt = (2J + I) 2 (2J + 1)2 (3.186)mn m n

spherical-top

Since and d = 0 for spherical-top molecules, we have:
0 0

rot R2
mn (Rn) 0 (3.187)
sphe r ica l-topro Srot

spherical-top

The statistical weight given by (3. 185) is due to the fact that for

a spherical-top, aside from the (2J + I) orientations that the rotational

angular momentum J can have with respect to a fixed direction in the molecule,

J can also have (2J + I) orientations with respect to a direction fixed in

space. Thus the total degeneracy of a rotational level of given J is

(2J + 1)2

3.4.5 Asymmetric-Top Molecules

For the asymnmetric-top molecular rotor, there are three principal

moments of Inertia that aee all different. That is the rotational energy is

given by:
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p2  p2  p2  2 2 2 2 2 2

(Ert + A - + B~ 1  (3. 188)
\JW)aym 21 21 2y top x y z h h h

molecule

where P , P , and P are the angular momenta along the three spatial
x y z

coordinates x , y , and z , and:

A cm (3.189)
8Tn cI

X

--- ":!h -1
B = __ cm (.:190)

C cm (3.191

are the rotationai constants, with A i B • C for the asymmetric-top. If

A C, we have a symmetric-top, while for A B C we have a spherical-top.

The three constants A , B , C are assigned to the three principal moments of

inertia of the molecule such that A > B > C.

The rotational energy levels for an asymmetric-top molecule cannot

be so easily calculated f.OD a simple formula such as was given in the previous

subsections for lin-.ar, symmetric-top, and spherical-top molecules. The exact

expression for the levels is (Refs. 10 and 16):

E J'WLasn,-Lop 2 ( B+ 2 j Wi (3.192)

molecule
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C) Here W =W(J) is in general a non-integer pseudo-quantum-number (W reduces to

JK! 2 for the symmetric-top) which has multiple values for each value of J

(like K, which has the values J ,J - I. ... -J). W is determined by the

roots of the following equations (Refs. 10 and 16):

j 0: W=0 (3* 193a)

j~ I: W 01

-5I=b 0 (3-1l93b)

J. 2: W-4 0

W -I + 3b 0

(.3.193c)
W -I - 13b 0

W- 4W - 12b2 =0J

J 3: W-4 0

W- 4W - 60b' 0
(3. 193d)

w2 (10 - 6b)W + (9 -54b -15b') =0

W- (10 + 6b)W + (9 + 54b -15b') 0

J~4: U2  10(1 -b)W + (9 90b -63b 2) = 0

W2 10 (1 + b)W + (9 90b - '352) =0

W' 20W (64 -28b 2) 0 19)

W' 20W' (64 -208b
2)W 2t 280b2 0
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J 5: W2 -20W + 64- 108b 2 = 0

W3 20W2 + (64 - 528b 2 )W + 6720b2  0

W3- W2 (35 - 15b) + W(259 - 510b - 213b2 )
(3. 193f)

(225 - 3375b - 4245b2 + 675b 3 ) = 0

w- W2 (35 + 15b) + W(259 + 510b - 213b 2 )

- (225 + 3375b - 4245b2 
- 675b3) = 0

IJ = 6: W3 
- W2 (35 - 21b) + W(259 - 714b - 525b 2 )

- 225 + 4725b + 9165b 2 
- 3465b3 

= 0

-.3 W2(35 + 21b) + W(259 + 714b - 525b 2 )

- 225 - 4725b + 9165b 2 + 3465b3  0 (3.193g)

W3- 56W2 + W(784 - 336b 2 ) - 2304 + 9984b' = 0

W4 - 56W3 + W2 (784 - 1176b 2) /

- W(2304 - 53,664b2 ) - 483,840b2 + 55,440b= 0

whe re: _

b A (3.194)
([B-~ + c)

Relations for W(J) with J up to J II are available, and various approximations

for the seL of relations (3. 92) through (3. 194) have been developed (Refs. 10

and 16), Note from (3.193) that there are 2J + I values (roots of Eq. 3.193))

of W for a aiven J.

The rotational constants A , B , and C are dependent on vibrational

excittLionb if they are present and may be written, as before, In the form:
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A A 1A - + 1 (3.195)

2"'

B= B CI (3.196)

C Co - (3.197)

wf her nA ilvbrto aredcorrectiondconseants .v orisotheaexcit trionlee

top molecules d I for all normal vibrations. Centrifugal stretching

corrections (with correction constants Dv) can usually be neglected (Ref. 10),

and it is customary to include the vibrational Coriolis and anharmonic effects

on the rotational levels in the terms by writ:.• (Ref. 10):

A, B, or C [(harm.) (anharm.) (Cor.)]A) B, or COf a +% 01 (3.198)

The average rotational energy of tue ZJ I sublevels with different

values W(J) for a given J is:

Erot/hc
__ JW / . (A + B+ C) J(J+ I) ,(3.199)

2J + I

which follows from conservation of energy.

I:
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The selection rules for transitions betweern the rotational levels of

the asymmetric-top rotor are similai to thoere for the symmetric-top rotor:

AJ 0 , ±1 (3.200a)

ttot tott t (to200b)*:

where (+) and (-) indicates the symmetry of the total wave function of the
tot tot

molecule (rotational plus electronic plus vibrational contributions) with (+)

indicating a symmetric wavefunction and (-) an antisymmetric one (see the dis-

cussion after Eq. (153)). The selection rule (3.200b) can be reduced to

combinations of pure rotational symmetry selection rules for 18C° rotations

about two of the principal moment-of-inertia axes (see Ref. 16, p. 92-95), but

we shall not elaborate on them here.

In general, the permanent dipole moment po of an asymmetric rotor can10

have components along each of the three principal moment of inertia axes, which

are designated a, b, and c, for respectively the smallest, intermediate, and

l]a;gest moment of inertia IA 1B and IC We have then:

whe re 'a'eb ec and ad are unit vectors along the moment of inert;a axes

ba e d U

a ,b ,c and the permanent dipole moment cxs d. The cos(a,d), (cos(bd),

and cos(h,d) term, are uhe direction cosines of axes a, b, and c with the

SI allowed. forbidden.
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0

0•• dipole moment axis d. In many real molecules, the dipole moment Pois along one

of the axes a, h, or c and in that case the relations are simplified of cou.rse,

since one of the direction cosines will be unity and the others usually zero.

The transition parameters for rotational transitions in asymmetric

rotors are easiest expressed by using the J = 0- J = I transition element R2
Omn

as the reference transition (see the discussion following Eqs. (3.112) and

(3.113), and Eqs. (3. 124) through (3.126)). We then have that:

/9R2\ - 'd2' d2 cos 2 (gd) c cm2'(3.202)

°mn)rot.

asymm. rotor

where, as before of course, do = o/e . Then the connection factor which

contains all dependencies on J and W(J) is:

C(9c = 9Q.(J,W) (3.203)

•"• )asymm. rotor
S ( A J - 0 )

( ( rot =P(JW) (3.204)

\ masymm. rotor

S J - Jn = II

i~m n

nasymm. rotor
(U - J -.- I)m n
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The superscript a, b. or c, that is there is in the most general case a

value for the connection factor for each of the principal axes of the moments of

inertia. Tabulations of values for the functions 9Q(JW), 9P(J.,W), and 9R(JW)

and other asymmetric rotor parameters may be found in Ref. 16 (Appendix V), and

9rotRefs. 29 and 30. Reference 16 uses for the connection factor 9Cr the notation
Omn

x
S and calls it the (dimensionless) transition strength which agrees with our

definition (except that we use g instead of x), since:

=,o 1.2\ grot _ '?grot
ro (R 9d2I (3.206)

0 0'mn 0 0 0m
mn mn r mn mn

If one non-dimensionalizes this expression by dividing by the constant factor( 9, rot 19s ro 2 rot
9d2  we get that /d0 0rea mni o 0mn

In the tabulations of the functions 9P(JW), etc., the so-called

"Ray asymmetry parameter" r, is employed which is defined by:

2 B -A -C
A- C (3.207)"•- A- C

Note that K is related to b by:

b -(3.208)

For a pro!ate syrn•etUic-top with B C, the asymmetry parameter x -1, while

for an obldLe syncietric top with B A , N z +I.
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,ii
Instead of labeling a rotational level of an asymmetric rotor (with

A # B i C) by (JW), one may label such a level also by (J ; K-1 P K+ ) where

K_ is the value of the quantum number K that would result for the level (J,W)

if B = C for the molecule (and hence K = -I), and where K+, denotes the value

of the quantum number K that the level (JW) would have if B = A in the molecule

(and thus K = +1). The functions 9Q(JW), 9P(JW) and 9R(J,W) whose values are

tabulated in Refs. 29 and 16 actually use this latter notation, that is:

(scrot) =Q(J,W) QQ(J ; K_ , K+1) (3.209)

° asyrm. rotor

AJ 0

(9Crot) 9P(J,W) 'P(J; K_ K+ 1) (3.210)

asymm. rotor

J - J = +1
M n

( crot) rR(J,W) 9R(J ; K , K+1 ) k3.211)

0m asymm. rotorjo M - J n -

For each fixed change in J, as expressed in any one of Eqs. (3.209) through

(3.211), the change in W or corresponding change in (K 1 , K+,) can have a

number of different values. If a molecule is almost a synmmetric-top, usually

only K. or K, (not both) is specified depending on whether B C or B -, A.

The statistical weight of a rotat',eial level k(J) with quantum

number J is given by:
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w k 2J + 1 (3.212)
rk k

ki

0and thus for example for the spontaneous emission rate A
mn

0o 64TT4 e 2Vn 3 •n -

mn m I-
/A )= 4re t• sec (3.2 13)

asymm. rotor 3hc 3  asymm. rotor

1,e have:

/,rot

2n mn~ 2
r in)-m gd2  cm2  (3.2 14)

mnIasym rotor r \2J +/ I
asymm. rotor

for a particular line.

The most studied asymmetric-top rotor is the H 0 molecule. Table 3-15
2

lists rotational parameters of H 0 and other asymmetric-top molecules.
2
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4. GENERALIZED THEORY OF TRANSITION BROADENING

4.1 SURVEY OF BROADENING PROCESSES AND THE LAW OF SPECTROSCOPIC STABILITY

The emission lines of gaseous atoms or the rotational lines of gaseous

molecules are "broadened" by various perturbations which cause shifts in the

effective enerqy levels of an atomic transition with respect to the rest frame

of an observer. The most commonly occurring line-broa-dn'ng processes are:

a. Natural or Homogeneous Broadening

b. Temperature or "Doppler" Broadening

c. Pressure, Collision, or "Lorentz" Broadening

d. Electric Field or ta Broadening

We shall review these elementary line-broadening processes and give analyti-al

expressions for them in subsequent sections.

In molecules, vibrational transititions exhibit broad emission/absorption

bands instead of lines due to the rotational sublevels of each vibrational level.

These bands do not show a continuous distribution of wavelengths as is the case

for the broadened lines (a) through (d), but instead they exhibit a number of

separated discrete (broadened) rotational lines. In many applications, it is

advantageous to consider an equivalent continuous smeared-out band in which the

rotational lines are no longer resolved but continuously distributed. The

equivalent smeared-out band aives also the contour of the real band.
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The reason why the radiation emitted in a vibrational transition is

not sharp but distributed over a banu of frequencies is of course due to the

rotational perturbations. It is therefore appropriate to call this broadening

of the vibrational transition energy:

e. "Rotational Broadening,"

and we shall show that the rotational broadening of the vibrational band

contours car be treated in a manner similar to the broadening of an individual

line such as in processes (a) through (d).

Similar to the rotationally-broadened vibrational transitions, each

electronic transition spectrum of a molecule shows a system of bands due to

the vibrational and rovibrational sublevels. Each electronic band-system

shows discrete vibrational bands which in turn contain rotational !'nes.

Again one may smear out the band-system of discrete bands and lines into an

equivalent continuous band which gives the overall contour of the band system,

and again one may call the broadening effect on an electronic transition by

the vibrational rotational sublevels:

f. "Vibrational or Rovibrational Broadening"

Before reviewing analytical expressions for the broadening processes

(a) through (f), we shall first state some general conservation laws which

apply to all broadening effects. Imagine a gas containing N* atoms or molecules

which are in a sharply defined excited state m of energy E which can relax to
m

a sharply defined lower energy state E with the emission of a photon ofn

frequency v (E - E )/h, at a spontaneous decay rate of A° sec-I. Then:mn m n mn
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d(photons of frequency Vin) N* (= A° , photons •sec" (4.1I)

dt mn p

Now suppose that the state m of energy E and the state n at energy

m

E are perturbed by interactions involving exchange energies small compared ton

Em , En , and Emn = E - En . For example, due to the random kinetic motions 1A

of the excited atoms N , some have effective energy levels E - AE0 and others
m

E + 6ED with respect to an observer, depending on whether they are movingm D

away or towards the observer Here AED is the kinetic energy which is small

compared to E It is clear that the frequency of the emitted photons as
m

observed by a stationary observer is no longer vm , but that it will vary over

a range of frequencies Av about v Equation (4.1) must therefore bemn mn

changed and we may write:

d2 (photons of frequency v - A0  N4 g n photons sec Hz
dv dt mn nmn

(4.2)

where v is the general frequency in the range vn about vm and g(vv Av

is a function which describes the distribution of v around the unperturbed

frequency v per unit frequency range.mn

If the perturbations are small, A? (v) A? (Vm), that is A? is
mn inn inn inn

not affected by the perturbation, and we can write the important general

relation:

V.:V + 0 V + 6mn mn
d (photons v f iN g(v, ,v lnd,

dv dt mn Amn Nn
, - V -einn inn

Ann photons sec , (4.3)
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() where e >> AVmn That Eq. (4.3) holds, follows from the fact that

regardless in what way the N* excited species are perturbed (causing the

emission of photons with frequencies differing somewhat from v = v mn), as

long as the integration in (4.3) covers all the emitted off-v frequencies,mn

the total number of photons emitted per second must still equal the total

number of'excited species N* multiplied by the decay rate A° (which was
mn

unaffected by the perturbation). This 6eneral principle, which applies to

all the perturbing or broadening processes (a) through (f) listed above, is

often referred to as the "Law of Spectroscopic Stability."

From Eq. (4.3) or the Law of Spectroscopic Stability, it follows

at once that regardless of the general shape of the function g(v,,VmnAVmn),

it must always be "normalized" so that:

/ g(v,V ) dv = I (4.4)

v 0

since we may set = , when integrating over 9(V,v mn•Av ). Of course v > 0.m-n mn

We note from Eqs. (4.3) or (4.4) that the so-called "line-contour" or

"line-profile function" g(VV mn'Vn ) is not dimensionless. Since g(vvmn Av nn)

is like a delta-function and differs only from zero for values of v close to

v v nin in the general range Lwv about v , it is conceptually and math-mn ~mn m

ematically convenient to define a new dimensionless "line-shape function"

b(,v inn AV n) and a "width" or "spread" AV n of the broadened line as follows:
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9 Vg(VrA'mn) : bAmn , Hz (4.5)
~mn

where because of (4.4):

CO

b(vv ,Avm) dv Hz (4.6)

V= 0

Since b(vv ,AVn) usually peaks at or near v , it is convenient to set:

b(v = vmn VmnAvn) = m, (4.7a)*

from which it also follows according to (4.5) that:

AVHz (4.7b)mn g~ :: mn Vmn.Amn),H

We are free to choose condition (4.7) which is not in conflict with (4.5) and

(4.6), since we can always multiply b(v,v AVm ) by an arbitrary constant C to
nin mn

make C x b(VV mnAV n) equal to I at v - Vmn Then according to (4.6), AVumn is

i also multiplied by C, leaving g(VV nAVn) in (4.5) unchanged.

*We could for example also have specified that b -: I for v - Vmax where Vmax

corresponds to the frequency at which g or b has a maximum value. However,
some band-contour functions may have several maxima and therefore we choose
Eq. (4.7) to avoid complications.
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Often in calculating say the total absorption of a certain transition

we have to integrate some function f(v) over a range of frequencies v which

include vmn and the line-shape distribution b(V,V mn AVmn) or g(VVmnAV mn

If the function f(v) does not vary rapidly in the region (V - AV mn) < v <

< (Vmn + AV)mn we have that:

V +) dv f f(V=v )A
-(,,) b(vv,Av Vmn mn (4.8)

V 0

or:

J =.+ co

J f(v) g(V, mAV dv = f(v=v) (4.9)

Thus the integration of the function f(v) over the line-shape can

simply be replaced by the product of the "width" or "spread" AVmn and the

value of f(v) at v v Equat!on (4.8) shows why Av as defined bymn mn

(4.7) is conceptually the most logical choice for defining the "width" of a

line or band.

Others have used the frequency-spread at half the height of the

fu:nction g(V, Vn, AVmn) or b(v, nAV mnn) as a measure of the "spread" in

the shape function, calling it the "half-width" or the "width-at-half-hnfight"

6V11n , In order not to confuse this earlier convention for the measure of the

breadth of a line with the one defined by (4.7), we shall call AVn as defined

by Eq. (4.7) the liine "spread" although it is actually more deserving of the
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name "width." This nomenclature is even more necessary in view of the fact that

many call the "width-at-half-height" or the "half-width" AVmn simply the "width."

Of course the two differently defined measures of the broadness of a

line-shape function, -6v and Av Z . e -imply related by a constant factor as
mn mn

we shall show. However use of Av has the advantage that a general equationmn

such as Eq. (4.8) can be written which applies to all types of line-shape func-

tions b(vv•,Av) If one •, rks with-Av and functions b(vv,-6v a dif-

ferent normalization constant is necessary fL. each type of function b(v,v n&Vn

in order that Eq. (4.4) be satisfied.

For example, the two most common line-shape functions are the Gaussian

line-shape function (applicable to temperature broadening):

bG(~)V exp-{( mn4.10)

and the Lorentzian line-shape function (applicable to pressure-broadening):

A 2
bL•vvAVmn (A2 \2 (4.1)

b - vmn)2 + (--Ln)

We have namely that:

Jexp- d dv 477 (4.12)
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I
and:

(9 / " •mn ( 2 dv=-- , (4. 13)

V V (V mn) + ( 2
M mn

Sso if we choose a' = Avmn/V- and a= Avn/rr in Eqs. (4.12) and (4.13),

so ifw hos A 1 A
as we did in Eqs. (4.10) and (4.1), the integrations yield AVmn Thus

Eqs. (4.10) and (4.11) obey the "normalization" condition (4.7), and of

course also (4.4).

The relations between the conventional "half-widths" "mn and

the "spreads" Av for the Gaussian and Lorentzian line-contours are:mn

(Av) = t 2 ( 'vmn ) (4. 14)
G

and:

(Av mn) =TT( AVm (4. 15)

The corresponding exprtissiorns for the line-shape functions in terms of &v
mn

are:

bG, exp- -mn (4. 16)

(*•Vmn) 

j

bL( VVmn,)V mn) = (Av (4.17)
6(v " )2 + (.vn)2
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which when integrated over the resoni.nce V yield;

in) dv AV2 'm (4.18)

0

and:

J bL(vv,.v) dv T 4v (4.19)
0

The line-contour functions g(vv,,. v) and g(v,v AVr) forinninn mn inn
the two cases are:

)2V Vh

exp{ -mn

gG~vvinn~v) '/2 2'(4.20)

nI 2• mn

9Ln(v v) 2 + (Vn) 2  (4.21)

SAmn m
2

ninnexp-4

9G 1,,11 ,n ) (4.22)
Avinn
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2U

)L( '=mn 'mn)) (4.23)=4

m (v- mn) 2 +(vmn 2

Of course all these line-contour functions satisfy Eq. (4.4).

In the following we shall discuss specific line-shape functions

b(vv AVn) and line-spreads Lw for the six broadening processes

discussed above.

I

ii
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4.2 NATURAL BROADENING

r ai The energy levels E and E in an atom or molecule between which
m n

radiative transitions of frequency v ln =(E m E En)/h can occur are actually

not completely "sharp" but according to quantum mechanics are subject to

uncertainties hNm and hyn which in turn cause emitted (or absorbed) photons

to have a spread in frequencies v about Vmn in the interval: jI
(V -Y <) v < (V + Y) (4.24)

mn mn mn mn

where:

'mn =Ym +Yn (4.25)

To first order (see Refs. 5 and 7), the uncertainties ym and Yn

are equal to the inverse lifetimes of states m and n, or:

-Y A0, ,Hz, (4.26)
m mk

and:

AY n A° Hz (4.27)
k

where A' was given by Eq. (2 d) of Chapter 2. If, as is oftnr. the case, the
mk

state n is the ground state with Infinite lifetime, and if the transition

m n Is the only possible one for level m, we have that:

mmn n A0 A Hz (4.20)
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4

and:
yn 0 (4.29)Y

The probability that the energy of state m lies in the range

E - dE is given by (Ref. 7):
2

W(E) dE dE (4.30)
h (2)dE(E E) ( 2m)2

and therefore the simultaneous probability that the upper state m is at

energy E ±--LdE and the lower state n is in the energy range E' -2 dE'

is:

Y m"Y n dE dE:

W(E) W(E') dE dE' d

2TT t(a E E) + 211 { )' (El E + (Y)2

(4.31)

For the observation of photons with emission frequencies:

..- (E E') (0,32)

we obtain then that:

i00

bN(V'V)LNmn MVil d W(E) W(E') dE dF'
gN( 'mn' mn/ K ArnN ':-

N E' (4.33)

After carrying out the int3gration of Eq. (4.31), we find (Ref. 7) that:
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I ?
b (4.34)(1

bN(v• vmn, A(mn) (34

A&vmn)N
- vmn + T r Nf

Y
(AVmn)N 4 , Hz (4.35)=n N mn

Thus the natural line-contour is; Lorentzian (see Eq. (4.11)).

For the special ground-state-connected case defined by (4.28) and

(4.29), Eq. (4.35) reduces to:

A?
S,. ) H . z (4.36)\ ,,nn N

The half-width 4V is then according to Eq, (4.15):man

N ____ fin N)N" 4 - 4 , (4.37)

where the last part of Eq. (4.37) applies only to the ground-state-connected

trantsition discussed above.
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4.3 DOPPLER BROADENING

The so-called "Doppler" or "temperature" broadening of spectral

line5 emitted by atomic and molecular gases is essentially caused by the

Doppler shift in the emitted photon wave due to the random thermal mntion of

the gaseous atoms or molecules. The Doppler shifted frequency v of the

emitted photons produced by atoms deexciting from state m to state n and

moving at thermal velocity vx along the line-of-sight or x-direction away

from the observer is given by:

V = V -X(c~

where c is the velocity of 'ight.

The number of moiecules moving with linear velocities between v
x

and v + dv in a gas at thermal equilibrium is given by:
xN

dN (ti ) ex/2 J x2  dv (4.39)
N 0 _21T kT, 2,p 2kT x

where M is the mass of the emitting atom or molecule, N equals the total

number of emitters, and the other parameters have the usual meanings.

y With Eq. (4.38), Eq. (4.39) can be rewritten in the form:

dN ""_ ___ ("22 2  e M c2dv (4.40)
To Vmn 2 kT vn
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(9Since the probability of observing a photon with a frequency

between IV -• • and IV -VI + dv is equal to (i/N°) dN/dv , we can

write:

bD(V'Vmn'AVmn) I dN (4.4M)

(-N) 0 d

in which according to Eq. (4.40):

AVnn Hz (4.42)

2

Smn

b(vvmn Avmn) = exp- n.43)
(AVmn)

D

We see that the Doppler line-shape function is Gaussian (Eq. (4.10)).

According to Eq. (4.14), the "half-width" Aem is then given by.

imn

mn 2(An 2) kT , Hz (4.44)(n 2n (Am--
mn)D ( c M
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4. COLLISION BROADENING

Collýsion or pressure broadening of emission lines, as the name

inJicates, ari;.as from atomic or molecular collisions. Lorentz first con-

sidered this type of broadening effect, hence it is also called "Lorentz"

' brcadening. The effect of collisions on a large number of oscillating atoms

or molecules is to produce a random distribution of abrupt stops to the

oscillations. If T is the mean time between collisions, the number ofS' C

molecules oscillating freely for time t is Nt = N exp - (t/c) The

Lorentz theory of sollision broadening assumes that after a collision during

which the oscillation was briefly stopped, an atom or molecule oscillates

again with a phase having no relationship to the phase before the collision.

A detailed analysis of the effect of such collisional oscillation

perturbations on the emission frequency (Ref. 7) shows that the center-line

frequency of a transition Vmn is broadened in the same way as in natural

broadening, except thar now AV I/(2-r), that is:

mn c

bc(vivm, ) = J( (4.45)

22

Here:

AV.\ ____, Hz (4.46a)
\ )c 2C
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where the collision rate zc = ITc according to kinetic theory is given by:

- P

6.7682 x 1026 1-2 , Hz (4.46b)

1-ii2  T

so that:

aYp

3.3841 X 1026 1-2 P Hz (4.47)
m C-•l2 T'

where:

1-2 Collision cross-section for oscillation-stopping

collisions between atoms I and 2, cm2

( ) p = Pressure of gas, atm

T Temperature of gas, 0 K

and the reduced mass P.1 2  is given by:

MI M2
PM M2  , a.m.u., (4.48)

1-~2  M~ +M

in which:

M I)M2 =Mass of colliding atoms I and 2 respectively, a.m.u.

Measured values of typical collisional broadening cross-sections a12 are

listed in Table 4-1.

The half-width (is according to Eq. (4. 15) given by:
T h -d5mn C
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TABLE 4-1. MEASURED ATOM-MOLECULE OSCILLATION-STOPPING

CROSS-SECTIONS, a012 (1O1 cm2) (Refs. 7 and 9)

(9Cross-Section, a(10- 16 cm 2)
First Second
At ~ Atom or Fuchtbauer.,

Molecule Joos and Zemansky Kunze
Din kelac ke r

Hg He 15.0 21.4

Hg H2  27.8 24.5

Hg Ne 35.7

Hg CO 44.5

2q 64.8 51.0

Hg 0 65.1
2

Hg CH4  42.8

Hg H20 68.5

Hg Ar 88.9 61.5 62.0

Hg C 125 (98.4)*

Hg NH3  71.2

Hg C H8  73.5

Penner & Webber SchUtz

Na He 31.4

Na Ne 37.8

Na H2 33.6

N Na N2  68.9

Na Ar -81.0

CO CO 40.4

CO He 1.94

CO Ar 12.8

CO H2  6.37

*Extrapolated by comparison with FJD data, whose values are consistently

20% higher than Zemansky's.
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"4mn 1.0772 X Hz (4.49)S1- 2 T'•

For completeness we write out the expression for the line-contour

function gC(V'V mn AV mn) which in accordance with (4.45) is:

_ _ I' c}_
9C(VmV , Hz- (4.50)gcV'mnA~n)=(AVncVmn n) + (A•Vmnn)C

(nv vvm) 2 + J(V )cj

where (bvn is given by Eq. (4.47).
C
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4.5 COMBINED NATURAL) COLLISIONAL AND DOPPLER BROADENING

Usually the broadening of a line near the center frequency is

determined by either natural, collisional or doppler effects since under a

particular set of densities, pressures and temperatures, one of these broad-

ening processes dominates over the others. In this case one can neglect the

contour functions and line-spreads of all but the dominating processes. How-

ever, because doppler broadening drops off exponentially with increasing

values of (v - yin) 2 while pressure and natural broadening drop off only
22

inversely with (v - v )2, one finds at frequencies v sufficiently far
mn

from the center frequency v v mnthat the pressure and/or iiatural broad-

ening term dominates over the doppler term, as illustrated in Figure 4-1,

even if doppler broadening is dominating for v close to vmnmnI The simplest case is the one in which collisional broadening

dominates over doppler broadening at all frequencies. In this case) ignoring

doppler effects, total line-shape and line-spread a,-e given by respectively:

2

bCN(VV n)6 = (4.51)

- )2 + 1 r

and:

(AV)N (6v) +(v , Hz , J(4. 52)

where (6Vmn) and (-AV are given by Eqs. (4.35) or (4.36) and (4.48).

C inN
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FIGURE 4-1. GAUSSIAN AND LORENTZIAN LINE-SHAPE FUNCTIONS
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If all three broadening processes are important however, it can

be shown (see for example Ref. 7 or 9) that:

YCND(~Vmn~A mn) + (Av~+Vmn)C

(eC N D n} 2)(VvI Vmn) m)

I J (AV

ri,

wher (+) i gvnb (4.5),nC (172 is gven)b (4.2) amnd

a-p

ydv Hv zH (4.55)
-CO A mn)2 + TT2 (V mn)n

N,80

whr Vi ie y(.2,i ie y( .2,ad



To find (AVm)C, we recall from Eqs. (4.5) and (4.6) that:

mnnm

mn mn mn
appyin (456 toEq4(.3)wef)d

t~mn)C Jn 2 AVy'V
(~mn)mn

2C )2Vj
dz) ID

(tv) J 2

Then C, fro (453 an (457 wegtfrbvy ,v)

NCDmn m

eF()
AV dz H (4.81



(1/2
N., UC,D(V'Vmn'vmmn) mn) ID(a,o/

O+D exp- 1-Tr y ( AV I2

AV m + nD n dy2= I(a,) o(4.)''i} -• \ ranN• Cmn

whe re:

--. •.1/2

and the integral in Eq. (4.59):

.I(a,) = -s-a exp(-z 2 ) dz (4.61)
T-T- a2 + ( - z)2

The intearal I(a,,) cannot be solved analytically, but many approximations

have been made for small and large values of a/t (see Ref. 7, section 4.4).

Some values of I(a,ý) are listed in Table 4-2 (after Ref. 7), while

Figure 4-2 shows plots of these tabulated values.

Note that with the definition (4.61), Eq. (4.53) can be written

more compactly:

C,N,D (VVmn mn) HzA (4.62)
(AV)
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TABLE 4-2. NUMERICAL VALUES OF I(a , )AS A FUNCTION OF FOR
DIFFERENT VALUES OF a. (After Ref. 7)

for a 0 for a 0.5 fora I for a 1.5 for a 2 for a io

0.0 1.0000 0.6157 0.4276 0.3216 0.257 0.0561
0.2 0.9608 0.6015 0.4215 0.3186
0.4 0.8521 0.5613 0.4038 0.3097 0.252
0.6 0.6977 0.501! 0.3766 0.2958 I
0.8 0.5273 0.4294 0.3425 0.2779 0.236

1.0 0.3679 0.3540 0.3047 0.2571
1.2 0.2369 0.2846 0.2662 0.2349 0.212
1.4 0.1409 0.2233 0.2292 0.2123
1.6 0.0773 0.78 0.1954 0.0902 0.178

!.8 0.0392 0.1333 0.1657 0.1695

2.0 G.0183 0.1034 0.1402 0.1504 0.148 0.0541

2.2 0.0079 0.120
2.4~ 0.0032 0.102 0.123 L
2.6 0.0012 0.088
2.8 0.0004 0.078 0.101

3.0 0.0001 0.066

3.2 0.057 0.0850 '3.4 0.051
3.6 0.045 0.0708
3.8 0.041

4.0 0.0183 0.037 0.0487 0.0598 0.0486
4.4 0.0505
4.8 0.0440
5.2 0.0378
5.6 0.0330

p6.0 0.0081 0.016 0.0228 0.0291 0.0414
6.4 0.0259
6.8 0.023!
7.2 0.0208
7.6 0.0186

8.0 0.004 0.009 0.0131 0.0169 0.0344
10 0.003 0.005 0.0083 0.0283
12 0.0232
14 0.0191
16 0.0159

18 0.0134V
20 0.0114
22 0.00965
24 0.00835
26 0.00728

28 0.00637
x30 0.C0564

32 0.00502
34 0.00451
36 0.00406

38 0.00366
40 0.00333
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4.6 STARK BRCADENING

Stark or electric-field broadening of emission lines arises in

highly-ionized gases or plasmas due to the Stark-Effect displacements of the

emission wavelength by the surrounding positive ions that act on an atom

(molecule) or ion which is emitting. Although the free electrons also cause

some Stark broadening, their effect may usually be assumed to be small.

The most commonly used expressions for Stark broadening were

originally developec! by Holtzmark whose results are very closely approximated

by a simpler theory of Russell and Stewart, and of Penner (Refs. 7 and 9).

According to the simpler theory by tne latter authors, the probability

than an atom or ion experiences a Stark-broadening electric field E or

nondiMLnsionalized field = E/E°0  is given by (Ref. 7):

p(O) dý = 9S(vvOmn,•,nn)dv \ -- (5/2) d6 (4.63)

where:

E(4.64)

E

z. e 4 12/3 2/3 2/3 -19 2/3 Volts
E -T) zi e ni - 2.60 z. e n, 4.16 X 10 z n.

(4.65)

z. Degree of ionization of ions (usually z. I)

-!9
e Electron charge 1.6021 X 10 Coulombs
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n. = Density of ions, ions/mr3

r° Radius of sphere containing on the average

one positive ion

4
The value of r used in (4.65) follows .rom the definition of r which0 o

requires that:

4
rr n (4.66)

S0I

while Eq. (4.63) is obtained from the probability of finding an ion at a

distance r which is given by:

p(r) dr 3 r )2 dr (4.67)
pr r r r,

()

Equation (4.63) has been criticized in Ref. 31 as being inadequate.

This is immediately clear if one applies the law of spectroscopic stability

to it, which demands that:

ff
0 0

j3 -(5/2)
Obviously p(P) dO = 0 dP as given by (4.63) becomes infinite when

integrated from 0 to o. The problem can be corrected however if one

assumes that for small 1 values 0' - + E/E I + E/E . A corrected
0 0 0

expression which can satisfy (4.68) is therefore:
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p(O) dO 3 (1C + )(5/2) dO (4.69)

Now the deviation of the Stark-broadened emission frequency (V -v)

mn

from the center frequency v is to first order directly proportional Lo E:

(V Vmn CmE Hz ,(4.70)

where C is the Stark coeFficient in Hz rn/Volts. Then from (4.69) and
m

(4-0,we oblain:

95v~,A ) 1.50 (1 + -(5/2) dv

-(5/2) 1./2
(cE1.5 (C E~L

1.5 E ) CE N v- 5/2 ,H

m 0 :Ifl(4.71)

The field E is obtained from Eq. (4.65), while Cm can be either calculated
0 m

frmquturn theory of- measured experimt-tally. Table 4-3 lists some measured -

Stark., coeffr icents C
m

To obta~n Av and ,~~v A we use Eqs. (4.5) and (4.6) or S
nin 'mn'mn

(4.56) again and obtain:

(1*vmn 0.667 Cm E0  2.78 X~ 10I z. n~ Cm Hz ,(4.72)

and:
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TABLE 4-3. STARK COEFFICIENTS*

Center Wavelength Cm
Emission Line of Emission Line

(nm) (Hz m/Vol t)

Hydrogen

Balmer - 656.279 3. 15 X 10'

Balmer - 486. 133 0.887 x 10'

Balmer - y 434.047 0.446 X 102

Balmer - 6 410.174 0.322 X 10'

Sodium

D2-Line 588.996 1.034 X 10'
2

Mercur 253.7 0.158 x 102

*Data are partially from Refs. 7 and 31.
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b (C E)5/2 (51.5 A) 5 /2

C E + (V- { m 5 + (v

4.08 x 10-47 z 5/2 n5/3 C5/2

. n. m

= {.1x o19 2/n~3 C + (/2ý 4 1 0 " zi n m mn)

(4.73)

From the values of C listed in Table 4-3 and Eq. (4.72), it ism

clear that a high degree of ionization will be required (large ni) for

(AVmn) to be appreciable. Only in stellar interiors, nuclear explosions,
Stark

and high-energy plasmas is this usually the case.
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4.7 ROTATIONAL BROADENING OF VIBRATIONAL TRANSITIONS fl
In the following we shall develop expressions for the average band

contour of the photon emission or absorption frequencies of a vibrational ..

transition (at a fixed electronic level) which is broadened by rotational

substructure. The technique we shall use is similar to that employed by I
S. S. Penner, J. A. L. Thomson, and W. J. Hooker (Ref. 7), and by B. Kivel,

et al (Refs. 32 and 33), although the derivation of our expressions and the

form in which they are cast are somewhat different.

For pure rovibrational transitions, we have for the rotational

levels always AJ = ±1 or 0, while for a vibrational level change, Av= ±1

is most allowed but overtone transitions with Av = ±2, ±3, and combination-

band transitions with Av , , •v... ..... =±0, ±1, ±2, ±3. ..... are also
orn morenspeifi irtion al level chage Aw caYcu htaedtrie
possible. This is in contrast with vibronic transitions in which only two

•" or more specific vibrational level changes Av can occur that are determined

by the Franck-Condon principle (see section 4.8). The selection rule AJ = ±1

or AJ 0 is absolute however in both vibrational and electronic transitions.

Because different types of rotors (namely linear, symmetric-top,

spherical-top, and asymmetric-top) have different energy distributions, we

shall have to consider each of them separately in what follows.

4.7.1 Linear Rotors

All diatomic molecules and linear polyatomic molecules are linear

rotors whose quantized rotational energy levels can be expressed by the

expression (see Eqs. (3.105) and (3.137)):
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rrut

E),rt [J(J + 1) h (4.74)
(linear) hc VBJ(J + 1) 2'0 \(rotor

where we neglected anharmonicities and centrifugal stretching, and where for

convenience we define:

vc c I + Hz (4.75)

The quantum number 2 equals v, , v3 - 2 ....... , - v (see Eq. (3.117)), and

we have always J >2 I (Ref. 10). If we ignore the splitting of the rotational

levels by 2 and refer all rotational energies to the J 0 level, we may

write:

I E rot Erot(J) - Erot(J=O) hvB J(J + I) (4.76)

For the vibrational energy levels we have similarly to first

approximation (harmonic oscillator):

lEviner = v +-~' hv , (4.77)

molecules /

where anharmonic effects are again neglected. In all of the above equations

vv 0, I, 2,.... are the vibrational quantum numbers of the normal vibration

5 of frequency vl and degeneracy d{ (see section 3.3), and the J are the

rotational quantum numbers (J 0, 1, 2, .... ). The constants at in (4.75)
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give the effects on the moment of inertia IB and therefore on Be h/(8rT2IB)

due to vibration (see Eqs. (3.105), (3.108), and (3.138)). Of course for

diatomic molecules the summation over vibrations • is not necessary since

there is only one normal vibration. If we refer all vibrational energies

to the ground state vo;= (v =O-'V=O....). then the energy of a particular

vibration is:

EVib( I =.) Evib(V v Evib~v =Ov=O ) = v hvo~~~ (Vye ... VVl, .. )- .... v

(4.78)

According to Boltzmann statistics we have for a gas in thermodynamic

equilibrium at temperature T that the fraction of molecules in a vibrational

level (v v -....) and rotational state J is given by:

Nv,Nj = N v fJ = Nf (4.79)

where N is the total number of molecules, and:
0

f-( v)/(kT)j (4.80)
v v oexp (v hvt

v v

f = e 2J + exp- (4.81)
r r

The total vibration weight w is given by the genera1 expression (see Eq. (3.91)):v9
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C)w 6( 1) + (v + 1) 6(d -2) +j-(v + 1)(v + 2) 8(d 3)

(4.82)

where 8(x) is the Dirac delta function. Practically all linear molecules have

a maximum degeneracy of d. 2 in one of their normal vibrations so that the

third term in the bracket of (4.82) vanishes. For diatomic molecules we have

of course simply wv I.

The vibrational and rotational partition functions Z and Z arev r

summations over the fractional populations of all possible vibrational and

rotational energy levels. Taking proper account of the degeneracies) these

sums are (Refs. 10 and 16):

exp-(Ev (kT))= exp- hv /(kT)

v v

[ ~ exp-{v hv /(kT)}]

S -exp-{hv /(kT)} - exp-{hv /.(kT)}

~T -exp-{h\J/(kT)] (4.83)
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/ ~~ ~ .*7 4

Zr~ = w exp-(Er t/(kT) = (2 J + I) exp-{(J + I)

J=o Jo0

2 h 3

kT I hv 4 I ++ +-- -+ - ...... (4.84)
hv 3 15 ~\kT 315 kT) 315 kT)

The frequencies of the allowed photon-active vibrational transitions

between a level m and n in linear molecules are of course (to first-order)

given by v = h-I {Evib + Elm " Evb + Eo r ot When the selection rules

(3. 127) and (3.128) are taken into account, this yields in general three groups

of emission/absorption frequencies which are called the P-Branch (J - n =I

Q-Branch (Jm = dn) asd the R-Branch (J " +0:

P-Branch (J - d = -I ; J > Am = An)
m n m B n

-, n , (B , V (4.85)

mn -B mSn n n M) n m)m

Q-Branch( =J J O; 0 sup(Cn) ; :1, or

weakly for At 0 k 0)

SVmn ( ) V8  " VB nV 4.86)

m J
"1n m

J=Jm n)
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mc ( - n 'm M ~n+

VV -+ + VBJ j V +

V=j Vmn+ 1B + m (ýnm m

+ 2vB + (3VB I VB)j V V) J2 (4.87)

Here the pure vibrational transition frequency vm is given by:

V (~ ~ (4.88)

For a diatomic molecule v is of course simply v =(v - v )V
mn mn m n e

If V B B as is usually the case, Eqs. (4.86) through (4.88)
m n

simplify to:

P-Branch (J - J I ; e
m n rn m

V j = mn 2 B n -VB~f n mn -
2 B-VBm -VBJ m

V 2V J v -
2vB 2vB (4.89)

Q-Branch (Jm J 1 0 J ýt sup(A A

IV V =V VQ AV BJ(J+ v)V AVn - -j B n+i) (4.90)
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R-Branch (Jim d + J +

V V Vmn+ 2VBJ AVBJ 2 = v + 2vB + 2vJ - AVJ2
mn Bn

SV + 2v = v + 2v + 2vBJ (4.91)

Bn B nn B B'n

where in (4.90):

SV(A"n)v (4.92)

and.

AVB VB V ce B(4.93)
B B vnB v fm n

:0

The last expression in (4.93) follows from Eq. (4.75). Of course AvB << VB"

K) For the purpose of calculating average band-contour functions, the

approximate relations (4.89), (4.90), and (4.91) are more than adequate. When

considering individual rotational lines orn the other hand, Eqs. (4.85) through

(4.87) are usually required.

In Figure 4-3, typical rovibrational emission bands are shown of

some commonly-occurring linear molecules. The rotational lines in the P- and

R-Branches are clearly resolved and spread out (line spacing = 2vB), but

because the lines in the Q-Branch are so close (line spacing 2JAVB) the

latter, if present, appears as -,ne very broad and Intense line centered around

the frequency vmn' Note that the diatomic molecules HCU and CO have no Q-Branch,

nor does the non-degenerate vI vibration of N2 0 show such a branch since for

the v vibration Im An 0. Only for the degenerate v2 vibrational transition

f) -1 of CO and for the v transition of C H2 , is there a Q-Branch present.2 52
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FIGURE 4-3. TYPICAL VIBRATIONAL EMISSION/ABSORPTION BANDS OF THE

LINEAR MOLECULES HU C o , c H2 , N20 AND CO AT T 3000 K

(Ref. 10)
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Now if there are N = N vibrationally-excited molecules in them v
m

gas at one par'Llu~ar vibrational level v , then the probability of finding
"a v vibrationally-excited moiecule in the J rotational sublevel equals fj
v moecl inth

that is of the N molecules, f N are at level (v m The internal ,mJm m -m
m

energy of the N molecules is given by:mm

hv' hv + Jm( +1) (J hv, (4.94)~m m

where the rotational contribution J (J + I) hv is z.lways small compared to. -

the vibrational energy hv and may be considered a perturbation of the basic
m

vibrat!onal energy hv or frequency v which is given by:
m m

"V" .. V 
(4.95)

The notation v in the above and below is short for (V .v

Now according to Eq. (1.25), which was derived from quantum mechanics,

we have that the rate dN/dt of photons emitted by the N molecules already

excited to the vibrational level vm is:

~ vib N Frot =N 0  Frot

SN A°Gr N A? Fr~ f N A°Fr

t m mn nm m mn nm J m mn nm

(,:m~ ~ ep~( +) IvB photons/sec (4.96).• ,,exp- ( . 6
I! kT level J
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rot J.

Here Frot which was defined by (1.27), gives the probability that the J -' J
mn m n

transition occurs when the molecule deexcites vibrationally from level v -v.

Because the total number of photons emitted per second must equal

the total number of molecular deexcitations per second, we must have that:

(I0
md -i A Frotf

N A? - m in F fj (4.97)m mn dt m mn mn

J=0 =0 m
Jm m

and since for any temperature T, we have always:

I, (4.98)in

in=
J=m

it follows that we must have:

rotrot
Frot mn - I, (4.99)imn w

r

or:

c wro (4.100)
mn r

because (4.97) holds for any temperature T, while F does not depend on T.
imn
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The result given by Eq. (4.99) or (4. 100) means that the general

summation over states i and k indicated in Eq. (1.12) must be a single sum-

mation over initial states i only, there being always one final state k

available for each i. In the case of a pure rotational transition on the

other hand for which the connection factor C given by (r.18) applies, themn

( indicated general summation sign is a double summation, over all initial and

final states, that is first we sum over all k for a given i and then over all

o rot roti. Thus c #C =w w
Mmn mn% r rm n

Now the probability pp that the molecule makes a P-Branch transition

"from J to J = J + I is somewhat larger than the probability p that it
m n m

makes an R-Branch transition from Jm to J m yfcor rprinlt

(2Jm+3) and (2Jm-l) respectively since the "availability" of quantum space at

level J is equal to 2J +1. If only P- and R-Branch transitions are allowed,
n n

"we must have then that:

"(P+R) Case

PR 2J +3
R_ m

p+I)- -R 2(2Jm+I) ,(4.101)

PPJmd Jm) PP + PR __

SPR 2J -1I

FR m

"PR =i + )jn=jm 2(2J m+f) ,(4-102)

since according to (4.99) we musL have for J that:
m

Frot,

Fr (Jn) p PP(J ;J nJ +1) + p(Jm;J =Jm-l) = (4.103)
mn m n P m n m +PR m n2 m
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Similarly we find for the case that transitions in the P~- ,Q- and

R-Branch are equally allowed:

(P+tQ+R) Case

Pp ~ 2J M+3(4 1 )
PPp(Jmjn=Jm+I) p~+P R 3(2J +0I 414

Pp + PQ + PR -32m

i -A

mQj'n m' )~ = Q+~ 32+ (4.105)

~R - J-

and:

FrotmF (im';jn pp(JmJi nI 'Qin~ j I (i m'in m- 1) (4.107)

Returning to (4.96) then, dividing both sidcs; by the constant factor

N A0  and using (4.103) or (4.107), we can write.
m nin

Gvib( f 2, 1,n (2 m3 \ m (J m 1) hv B ~l
mn~ r d\ ZrI T

Gvib(Jf( M+ ep-j--m(n~IIv
mnQ m d4l09T
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/ m m(Jm+I hv
Gv(ib(J 2J-I _____-_____ (4.110)
mnRm d\ Z exp- kT

Here we have in the case of no vibrational degeneracy, that is in the P+R

case, that f is given by:

fd = 1/2 (P+R Branches only) , (4.111)

while in the presence of degeneracy, that is for the P+sQ+R case, fd is:

fd = 1/3 (P+Q+R Branches) (4.112)

vib vib vib
The functions G , n ,and G give essentially the fractional

mn Gmn mn Rie s
P QR

strength of an emission line Jm in each of the three possible branches and has

, values only for the discrete numbers J =1,2,3,.... (and J =0 for the P-Branch
m m

only). Now for reasons which will become clear below, when we go over from the

vib
discontinuous distribution function Gvib to a continuous one, it is convenient

mn

to express Gvb as the fractional strength per unit range of emitted photon
mn

frequency as defined by Eq. (1.30). Equations (4.89) through (4.91) show

that in the P- and R-Branches the emitted photon frequencies are spaced at

constant intervals Avj = 2vB for successive Jm values:*

'9J I m )-I Li e
(2v) Lines (4.113)

I d- IP-Branch

and
R-Branch

while for the Q-Branch:

fWe shall use only absolute values of dJm/dv since we want to keep the functions

g positive (see Eqs. (4.115) through (4.117)). For linear symmetric molecules
such as CO2 , the effective spacing between lI nes is Avj = 4vB instead of 2 VB

so that dv/dJ = 4VB , Hz/line (see factor f, on p. 203, ff).

2u2
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dJ Lne

Mdv 1 2(Jm+l1) AvB, Li e (4.114)
(Q-Branch

Us ing (4. 113) and (4. 114), we may then rewr ite Eqs. (4. 108)

through (4. 110) in the form:

gPJ) GibJ d m exp~ -IJm( Jm~~V -H 1  (4.115)

gQ(J vi dJ d 2J +Z kT~~mJ7V Hzz

m dv 2mJmlJIBB

IdJ I 2J-~l -I (J+v
R v ib j m I m -

gv(Jm) G mnm d fd 2(J+1BIVIZ ep kT , Hz (41)
r

the robailiies p ~ PQ ivenin qs. 4.11) troug (4406)1Fo

ablte remin as gie by Eqs (4(0)thogh1.167)owvro

theslifactiors are mvoidifed byfrntastefeto nuclear spin anuaommnunefcs

nonsymForititmcsnrc linear moleculessuhaHUCO N, an Cthesttstia weight

theseJ facofrtherrotational sybnevesear mustnbenmultipliednbymtheffatto

(Ref. 10, p. 16ff):
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_ _m M) +(+IO fI(Jm = 211+1) 6{1 + (-I) +S21 + I

(tria tomic
\symmetr ic)

(4. 118)

Here 6(x) is the Dirac delta function, that is 6(x=O) = I and 6(x#O) = 0;

therefore only one of the two terms in Eq. (4. 118) is nonzero for a given

iJ value. The parameter I in Eq. (4.118) is the nuclear spin quantum number
m

of each of the two identical atoms that caused the linear triatomic molecule

to be symmetrical, such as the Oxygen atom 0 in CO . The parameters s in2 m

(4.118) gives the total symmetry of the combined nuclear spin wave function

I the electronic wave function ie , and the vibrational wave function *v •

that is of the wave function *s = 'I'e'v " We define for convenience:

S - Sv (4.119)
m 21ev

where the factors sI s s are the parities (s = +1, or -I) of the wavw

function *I * e and *v, respectively. Then we see that we can only have

s 0, or s I for the case that s S s +1 and = -I, respectively.

For triatomic symmetric molecules with two identical and symmetric

nuclei each having nuclear spin quantum number I, the spin function *I is

fermionic with parity s1 = -I if I = (k + 1/2), and bosonic with parity

s = +1 if I k, where k 0,1,2,3,.... Mathematically we can express this

result in the simple form:

sC -')21 (4. 120)

(tria tomi c
symmetric
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The parity s of the vibrational wavefunction at level m may beSv)
expressed by:

S:jv,

sv m (4.121)

since the vibrational wavefunctions are even (s = +1) for even vm and odd

(Sv = -I) for odd values of v . Here the v are the vibrational quantum

numbers of the normal vibrations { at level m.

The electronic wavefunction for nearly all rovibrational bands of

interest is that of the electronic ground state and for nearly all photon-

active * linear molecules s = +1 in this case.e

For symmetric linear molecules with groups of symmetric atoms such

as HC-CH(C 2 H2 ), CN-NC(C 2 N2), and DC-CD(C 2 D2), Eq. (4.118) is modified to

(Ref. 10, p. 17):

ga ,.x / s
I g ) (J +s + ()

f(Jm 'Sm) g"s + 6 I + (-I) + 6 +

(symmetric) 9I gl gi + 91

(4.122)

where:

(2x )2+ ~ (21X~ + 1)(4. 123)
xi X

*One usually uses the term "infrared-active" instead of "photon-active" meaning

that the d'nole moment for a vibrational transition is not zero. Because the
photon is not ]'ways in the infrared we prefer the term "photon active."
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and: r

Sg( =7 T + 1) "7(2Ix + 1] (4.124)

Here the subscript X takes on the values X = A) B, C.... in which A, B, C,....

are the nuclei in the group of atoms that cause the symmetry, that is X = H, C

for C2H2 for exaRple. The parameter s in (4.122) is again given by (4.119).

The parity s1 in this case is however instead of (4.120) given by:

21
si =TT 1-) (4.125)

x

Note that Eqs. (4.122) and (4.125) reduce to (4.118) and (4.120) if the two

symmetric atomic groups contains only one atom each.

i' )
The result of the nuclear-spin weighting modifications just described

will of course also change the probabilities (4.101) through (4.106) to:

(P+R) Case

2J + 3

pP(Jjn=JJm+I) f I f(J +1,s) (4.126)
PJmJnJm+I 2(2J+ i)j

p(Jm ) (2Jm ) fi(Jm1.Sn) (4.127)2(2Jm Jn Jm I2- J + 1) J

(P+Q+R) Case

2J + 3

pp(jmjnIJm+ I) = m f I(JM+ iSn) (4. 128)
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->~ 
f (4.129)

2J I
M4

PR(Jm Jn=Jm -I) = 3(2J +l1ýfI(Jm-lSn) (4.130) •

From (4.122) it follows that f iJ+l)= fi(Jm-I). Then using Eqs. (4.122)

through (4.124) and defining:

+ ~~ ~ ~ ( +S + 11)•+(•. 4•
PR m~jII (J~n+}
If- I(JnmI)Sn) fI(Jm+,Sn) = -@) + (-I) +

(+

erst s f n(4.131)

fQ f i 's + (i +S e +-1M)

8{I +s (+)

(+ + e) + (m n4.32

where'.+)] 
412

~TI( 21X + 1) 1/171T(21 x + 1)} (4.133)

it is clear- that for symmex-tric molecules the factors f din Eqs. (4.115) through

PR Q
(4.117) must be multiplied by fIR for the P- and R-Branches and by f1 for the

Q-Branch.

207

, - ., -



Note from the above relations that for molecules such as CO2 where

L•) 1 I(0) =0, the parameter 01  I so that the factor .i(Jm=odd sn=) 0

as well as f(J=evensn= ) 0. Thus alternate rotational lines are com-

pletely missing in these cases. For C2 H2 on the other hand I 1/2 and

1 3
1 = 1/2, so that alternate lines have "nuclear weights" f, =- and fI 4-

which is confirmed experimentally in Figure 4-3. In general the nuclear

spin effect causes an intensity fluctuation of alternate lines. It is clear j
from this that for smeared-out bands which will be discussed below we may"?

set the average f1 factor equal to- for symmetric molecules, since always:

f jv1-61  + +6d/2 .(4.34a)j

For nonsymmetric linear molecules on the other hand:

I (4. 134b)

It should be emphasized that the fI factors only apply to

completely isotopically-symmetric molecules. Thus for the molecules 016CO ',

O' 6CO 7 DCCH, all rotational levels are equally probable as far as nuclear

spin statistics is concerned. Only molecules such as 0 6CO16) OI'CO1 8 ,

-O' 7CO, HCCH, and DCCD have variations in weight of alternate rotational

levels due to nuclear statistics effects.

For all diatomic molecules, and for all polyatomic linear molecules

in which no degenerate vibration is actively participating (i.e., A A 0),

only the P- and R-Branch emission can occur in vibrational transitions. We
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shall therefore first limit our further discussion to this (P+R) case,

returning to the (P-iQ+R) case in subsection 4.1.7.2.

4.7. 1.1 Bands With Only P- and R-Branciies

For the (P+R) case, we have according to (4.111) that fd in

Eqs. '4.115) and (4.117), while the factor fP must be added for symmetric

molecules. We shall add this factor in what follows for completeness with 1

the understanding that it equals unity in all cases except when symmetric

molecules are considered. Setting for simplicity J = J in (4.115) and

(4.M1), these equations then read:

PJ + 3/2 PR (i)h 1

(J-O 1,2,3,...)

g R(j) = B2\) PRf exp*-~ v Hz1  (4.136)

(Jý 1, 2, 3, 4, ..

where J 1,2,3,4,... for both branches and in addition J =0 for the P-Branch.

Inspection of the vib:-ational bands dl-olayed in Figure 4-3 clearly

show the near-symmetry but distinct difference between the P- and R-Branch

line intensities as ind~icated by Eqs. (4.135) and (4.136). If we assume

typiCal values of v8  I '~m , T " 30 OK, and Z I- , we get for the inten-

sities in the P- and R-Branchas the values shown In Table 4-4, according to

tLtcse equations.
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TABLE 4-4. TYPICAL P- AND R-BRANCH INTENSITIES

(• (VB = I cm ; T 300 OK ; Zr I

J P-Branch Line R-Branch Line P R
m m ~~(cm_,_ (cm_ _

0 P-I 0.75

I P-2 R-I 1.24 0.25

2 P-3 R-2 1.70 0.73

3 P-4 R-3 2.12 1.18

4 P-5 R-4 2.50 1.59

A comparison of the relative intensities of for example the CO (vB= 1.93 cm-)

(1) and N2 0 (VB= 0.42 cm-) lines in Figure 4-3 with the values listed in Table 4-4

shows good agreement.

If one wishes to determine the band contour and its width or spread,

or if one desires to calculate the average absorption or emission in applica-

tions where the lines cannot be resolved, it is convenient to assume that the

lines are smeared-out continuously over the bands. To do this we let J
P R

become a continuous variable, so that the functions gv(J) and gv(J) become

continuous. Of course v is also continuous now according to Eqs. (4.89) and

(4.91). J will run here from 0 to for the P-Branch and from I to co for the

R-Branch.

PR T- ivnb

In the smearing-out process we also have that f PR given by

Eq. (4.134), and we shall let Zr Z since in changing from a discontinuous
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population density per state J to a continuous one, the normalizing constant

Z given by Eq. (4.84) may changc.

r

Now in what follows we want to express v in terms of J and thus

we have to invert Eqs. (4.89) through (4.91). For the P- and R-Branches, we

have:

P-Branch

J J(-mn2B) = B) (v vmn(IM R-rnhm V 2) V(4.17

R-Branch

J = 2v Hz/Lne (4.138)*

VB ~ 2V V zlie

I

According to these relations a differential change in the continuously-varying

photon frequency v is related to a differential change in the (continuous) I

parameter J by; I

P-Branch

,:dyv -2vB Hz!Line (4 .139)•
SdJ B

R-Branch

dv
dJ +2vB HzlLine -'4,140)*

*For linear symmetric molecules such as C02 and CS2 .J= 0)2)4)6).,, -- Jeff=

=0,1,2,..., and vB -O, N~f= v so that dv/dJef=- 4vB Hz/line.
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""Us in Eqs. (4.4 , '4.1 "5) (4.136), (4.139), and (4.140), we can

N.now calculate the constant Z• 
:

r
A

Z ' = z f Z , 1 9 ( j + g R-j
gv(J) + g(d )[exp- ] dJ kT

v 0 j Co

=OT 
dJ

T .T + expT1/ I]

j .. Ofe 
expkT jj VI)+i+ L1• , l;kT./2]hV I~I"•NS;;"[ý Z'x 

/2: 

k { r T• /

+ I
S= + + 0.4142] + 0.4142

(4.1 1

where." as is almost always the-'case, we assumed that exp-(hvB/T) I because ,,.

•: 1hv5 << kT. Often this also means that we can furthbsr app,-oximate Z' by ..

;.;• gnoring the last two terms in (4 .,141), setting: 
!!
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This expression (except for the factor f1) is identical to the first-order

approximation to (4.84) and thus approximately:

"ZIzr (4.143)

With Eq. (4. 142), Eqs. (4.135) and (4. 136) which are now continuous

(with fPP- and Zr. Z') become:
r r

P (J + 3/2~ exp- jji)h Hz_ (4.144)
\vj 2 kT/h ) ( kT I

(a j < oI) I'

R~j = -1/)ep-{ k v (4.145)

01 !.J < )

or in terms of the photon frequency v ,using Eqs. (4.137) and (4.138):

/ n+B- p~rin - V(mn - 2 B-v)

( gkT) 4\ 4 B kT/h ,z

Omn( B (4.146)*

V- ( _V V.-, ((V - X) v -V + 2 )

= M exp-~ B) Hz'
'\ 4v kT/h/ 4vB kT/h

(V+m 2v B) -V<~ (4. 147)"

Note that we can conveniently combine Eqs. (4.146) and (4. 147)

into the one expi-tssion:

L ~~~*For linear symmetric molecules such as CO2 an C 2 ,-(- mn) should be

subsnduted for

p.sittd o (v vn~n) in these continuous expressions (see footnote on
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PR Iv- n Bv __ __n Vmn 5)

0~v< 4"1 kT/h /v VB kT/ h

*H (IV IV -v 
2v B I),Hz- (4. 148)*

Here H(x) is the unit step function, the integral of the delta function 6(x):

H(x 0)= 1 H(x<O0) 0 (4. 149a)

6(Xx ;) 1 (x J 0) 0 (4. 149b) C

Equation (4. 148) has thus a "symmetric hole" in the region (vminn 2v B < V < j
< (v ±n 2v B) where no photons are emitted.

Now in the smearing-out process, we should actually have "smdared

'..' the first lines of the P- and R-Branches also over the frequency regions

(n B mv<v nd v <1( + 2v ) instead of assuming that all

radiation stops abruptly at the (Vmin - 2v B) and (vmin + 2vB ) points. To cor-

rect this, we must therefore change (4. 148) (which I-s symmetric about

mv V )V and rewrite it as:

(V V
PRo iv-VI( VHn4.10

kTNh exp- Hz (410

O < v<o 4v~ )BV kT/h ,B P

Equat ion (4.1i5o) still drops to 0 at v =v ,but is now correctly "smeared"'
inn

over the frequency spectrum in the vicinity of v =v . The smnall adjustment
mnn

*See footnote on previous page.
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(v << V) we made has virtually no effect on the normalization constant
B mn

Z.
r

We next want to determine the spread AV and line-shape function
mn

b(v,v•Vn) by using Eqs. (4.5) through (4.7). However if we use (4.7) we

run into a problem since g(v = vm) = 0. We therefore shall use a slightly
mn

different definition than (4.7) to avoid that AV -. o. We can do this as

long as Eq. (4.6) is obeyed (see the footnote and discussion following

Eq. (4.7)).

The linear factor Iv - VmI is on the order of JVB in (4.150) and

except in the vicinity v v , it has only a secondary influence on the
PR mnPRrvfunction g (v), the exponential term giving a much larger change for a given

change in v . We shall therefore ignore the linear term and define the

band-spread to be:

(Vmn mn
exp- 4vB kT/h

AVmn 4B kT/h

41,)kTB 1/2

AV= 2.89 x 10 (vB T
nh (Hz)( 0 K)

5.006 X '0I (vB T) 1/2 Hz (4. 51)"

(cm IX (OK)

*For linear symmetric CO2 and CS2 , this expression must be multiplied by \[;
see footnote on p. 213.

215

Y ""'N



Then since g(v) = b(v)/Av , we have from (4.150) that:

mn

PR IV - Mn VmVmn)b (v,v ,Av )exp- (n
v mn mn AAVmn

Also we have then, rewriting (4.150):

"PR IV - Vj _(V H 53

gv (v'VmnAV mn) - A ) 2  exp-Hz (4. 153

Note also that Eqs. (4.8) and (4.9) still hold, even though we defined AVmn

differently from Eq. (4.7).

Equations (4. 151) through (4. 153) are in the desired form that we

set out to get. We can use these equations now also to obtain expressions

for the individual pressure- or temperature-broadened lines in the bands.

We get for the detailed rovibrational spectral profile:

PR PgR(V
P(V,v Av A gn b(vvjAvj) 

.6vro v mn mn v JImn mn

PR (~~A)~-

mn j 6Vj Hz , (4. 154)AVm AVj

mn:

b P R (,:
Here the band-shape function b (v=vjVmn)AVmn) is given by (4. 152) and \j

is the center frequency of each rotational line, given by (4.85) and (4.87),

that is for respectively the P-Branch and R-Branch:

*See footnote on p. 215.
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V ' V'-v ( v 1 (J+ I) - v 1(+) (J-O.1, 2,2. (4. 155a)
J \VJh mn\B( B /V BV B /J 1

P n n m

VJ (VJ)= Vmn+ ('B +VB )J- (VB ) •B (J= I,2,3,....) (4. 155b)*j R Mj mn B Bn Bn Bm • ..

If the lines do not overlap, the parameter 8 Vj is the spacing between lines:

6Vj 6 -V j - VB + VB z 2vB 2 (6V' > AV (4.155c)"
m n

If on the other hand adjacent lines do overlap considerably:

vj 2V gj(,vvA) dv , (8V' < A) (4.155d)*

V~=V 46v5 ~

The line-broadening function g (\0•JAVJ) in (4.154) is in most

applications either the collision- or doppler-broadening function given in

sections 4.3 and 4.4, and AVj is the corresponding line-spread for collision-

or doppler-broadening. That is gj(v,vjAv j) = gc(vvj,Avc) and AV = AvC

given by Eqs. (4.50) and (4.47) or gd(VVjvAvd) gD(vvjAvD) and Aw Av D

given by (4.41) through (4.43).

To prove that (4.154) is correct, we first integrate over one line:

V + A

•fJ 2 J

(4. 156a)

*For symmetric linear molecules like CO2  J:- 2, 4, 6p ..... only, and

2v-. /4vB in the expressions for 6v and 6v .
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Summing next over all lines J, we get:

PR ) PR
9 (V 8 Vj j , (V' V~ AV dv I (4. 156b)

J=0 v- =

Instead of using Eq. (4.152) in Eq. (4.154), we can improve the

accuracy of the latter relation by using the original expressions (4.135) and

(4.136) from which (4.152) was derived together with (4.142), (4.143), and

(4. 151):

bPR ( AV 9PR (
v J', Vmnn mn mn vJ`Vmn'AVmn

P RP
- hmn 9 (J) + d = bP (JvmnAVmn)

PR (4VB J + 3/2 J(pi Hv
Rj) Lh 2 kT/h kT H(vrn- vj) H(J) +

+(J 1/2) ~exp- (J(J+I) hV B)H(vj~Vn H(J-1]

bPR= J P (\j w PR .. exp-h-
v mn mn w1 (J) ITJ / exp_\ kT ) j

J + H(V- vj) H(J) (J+ )Hvjvm) H(JJ 1)]

PR
Here the nuclear-spin-effect factor wI is defined by:
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7 -7 . .

fR (j+S +1)~w PR ( fI I - I + (-I) +
w1 (J) = [( )

I (I+k n

+ (i + e1 ) I1 + (-I)n , for

symmetric linear molecules (4.158a)

PRWI (J) I , for nonsymmetric linear molecules (4.158b)

In Eq. (4. 158), 6(x) is the Dirac delta function, while H(x) in (4.157) is the

Heaviside unit step function defined by (4.149). The factors H(vmn - v) H(J)

Sand H(v - vmn) H(J+ I) in Eq. (4.157) insure that either the P-Branch factor

(J t-•-) applies with J = 0,1,2,...., or the R-Branch factor (J with

J 1,2,3, ... , but not both simultaneously.

We shall distinguish between the approximate expression

bPR(vJvnnAV ) given by Eq. (4. 152) with v substituted for v , and the

PR
more exact expression (4.157) by writing the latter as b (JVmnVmn) that

s in fn t
is with J shown as a parameter instead of vj Then the exact contour function

for the rovibrational band lines is instead of (4. 154) expressed by the formal

relation:

"grov( •n mn) PR(J'Vnvn) gj(v,•v)Jv) 6 Vj Hz" (4.159)
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Equation (4.159) is very useful in applied work and gives

a continuous expression for the actual line intensities in a vibrational

band as a function of the continuously-varying photon frequency v It

follows the spectral profiles shown in Figure 4-3 rather well.

4.7.1.2 Bands With P-, Q-, and R-Branches

In case all three branches are allowed, we have from (4.115)

through (4.117) and (4.112), that:

g•(J)J(+I =H z- 4v10
j J+ 312 PR3vZ f exp- kT B Hz4

gv•(j) J+ 1/2) fI e J(J+i) hv( 6

Q ( + exp-/ , , Hz-' (4.161) I

J 3(J+I)jIAVB (kBz

Rvj = J-1/2 PR J(J+I) hvB
R3\BZ fI expR kT Hz (4.162)

where again J J 1,2,3,.... for all branches and in addition J = for

the P-Branch, and where the f1 factors are equal to I unless a symmetry exists.

PR Q-If we now let J become continuous, we must let as before f and f -. fand

Z - Z' . Further we need In addition to Eqs. (4.137) through (4.140) sim~larr r

relations for the Q.-Branch. Thus inverting Eq. (4.90), we have the relations:
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Q-Branch

J = Jm Jin =- I + 4 {-I (4.163)*

J(J1= JIm)(J+ = = (4.64)
B

dv = AvB (2J+l) dJ (4.165)*

Here AV and v B were given by Eqs. (4.93) and (4.92), and A m by Eq. (3.117)
= = 0).

(in most transitions of interest Im I and I n

Calculating Z' we have as before:
r

00 k rhv B)1/2 1

Z= f Z rgp(J) + gvQ(J) + R(J)Idv I LT +( 4 kT- + 0.41421+

v= 0

ý-I ( ~2J + 2(2J I) exp-!( h)dV-k (4.166)

3kT/(hv 8) 1
J= I

Here we set (2J+I)/(2J±2) , I for the integration over J from J I to J ; 0

h2bV
for' the Q-Branch, and we set exp-• kT ] z I as before because (hvB) kT.k <<kT

The integration over gv(J) and gv(J) Is the same as for Eq. (4.141) except

for the factor 2/3. From (4.166) we see that again Z = Z as in theP+R) case.
r r

*For linear symmetrir molecules such as CO2 and CS2 , J = 0,2,4,... -" jeff

eff
0, 1,2,... and Av e " vB 2 AV a
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With (4.166), Eqs. (4.160) through (4.162) become:

9:(J) + 312) J(J+ 1) hvB1 -
g (j) = J+ 3/2 exp - h I Hz"' (4.167)

(I < U ) 3BJI T/h k m

(0 :5 1 <

g~v(J) = " , Hz" (4.168)

( rI < CO< ) (3 1) kT .! kI J 1/

gR(J) =xp ( i/) J(l) H z5  (4.169)

0 Jr < CO)

Here B is defined by:
B

)VB EVB ' VBI n (4.170)

B2 B m

Substituting next for the frequency v via Eqs. (4.137) and (4. 138),

and letting v rur, to vmn as discussed in connection with Eq. (4.150), we get

for the P- and R-Branch:

[2
1 R•) V. Vmn (V V

PR (Iv-v n(V i)) -
(v) exp- Hz (4. 171)*

6v kT/h I4\j kf/h

*See footnote on p. 213.
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Similarly using (4.164), we obtain for the Q-Branch:

g((V) = h exp- V Hz (4.172

§BkT/h 
.

(VmnV3) :5 V < CO, if AVB < 0

O < V (Vmn-VBQ), if AvB > 0

Here B was given by Eq. (4.92), and we use the absolute sign on (v mn-vvQmn B

because of our definition for 9B (see Eq. (4.170)).

Defining the band-spread Am and shape-function bv(V'VmnAV)

again as we did for the (P+R) case, we find that:

An = 4vB kT/h , Hz (4. 173)*

PR V mn1 V4 17V-mn
(O <v -. < )V5\ kT/h ) ex- 4v kT (4I7)

b 3MB kT exp- %kT'•'Q (4. 17)*

v~ 4v k

i IVB>BkT

(Vn s; ( < B if 6VB > 0

or in terms of AVmn

*For linear symmetric C02 and CS2  IV- mnl"'A I V'V". I in (4.172), (4.174),

and (4.175). Also AVmn 8-vBkT/hi in (4.173) in this case (see footnote on
v . 215).
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3,3

_ _ _ IV--V
bQ(V)exp-(4. 176)*

v 3v AV-,
4vm 4 B mn B ',(.7)

(o < V : (Vmn- 4) if AV8 > 0) m

((Vmn-vQ) :5 V < CO, if AVB < 0)

Note that in Eqs. (4.175) and (4.177), V V -mN;' or v 'vm B

on whether AVB > 0 or AVB <0.

Again like in the (P+R) ;ase, we can write for the detailed

rovibrational structure: -

gPR9 V ,~v 'AN h h R(V ,v , )g(v.~vj,Av j) ,Hz , (4.178)
roy mn rnn v Jvmn Amn J

where: :
hPQR~vJ n'm 12 2rnfVJ) V [ep -vJin)]

h (N (V J~n [epxp-rn2]v H 8vj vnnH( -vj)(-) +

v ~ ~ ~ ~ 4 JIm-"m V (m

4- 3 fl2 6V i (4.179) H -VI:n

*FrCS C 2 wehv+ta 2 6~V2k/ (8ervious \ footnote)

3ý mn')rxp 224
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Q Vm V A i (J+I) (1 1,2,3. ) (4. 180a)
J mn B Bv Q Q

0V
SV (J+ IAv8  gj(V+Vj AV )dv Avj , if AvB< Avj (4. 180b)

J 2 B

Instead of employing (4. 179) in (4.178)' we can again improve by

using the original relations (4. 160) through (4.162), replacing (4.179) by:

mn~h ~ ,J(J+I)_hv\

v VmAVm) = (-k texp( kT

( 38VVj 6v
S J) + - H(v-V 6) H(J) + - H(vj-V

W1 .I( 2I mnVJ LAVn 2 J mn AV
mn mn

H(J- I) + H(-vj) wQ(JQ) B(JQ+I) Am--H(JQ-I) (4.181)

and thus:

PQR/ =hQR( 412

g (V n'V mn AV hPQ (Jv,\ A\n) g (V, VJAv ) ,Hz- (4. 182)
grov rr. n Amn) v ,•mn &mn)jv•dAj) H"

Tihe parameter w R(J) in (4.181) is given by (4.158) again, and wi(J) by:

Q f ý(J+Sn) N+'+
W(JQ) f I - 1) 611 + (-)+ 0i + e1) 6 1 + (-Ij

for symmetric linear molecules , (4.183a)
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wQ( J) I , for nonsymmetric linear molecules (4. 183b)

Here the nuclear- spin parameter Q~was defined by Eq. (4.133).

4.7.2 Symmetric-Top Rotors

fr For symmetric-top rotors we shall follow exactly the same steps

as frlinear molecules. The main difference is ti~at the rotational energy

levels now possess two rotational constants instead of one, that is in a

rovibrational transition the emitted photon frequencies and the line spacings

are (see Eq. (3.163)):

4-P-Branch (-sign and R-Branch (+ sign)

V - +Av- vJ 2vJj (Av ~)K' (4.184a'

(J =Sup(JJ)) mnnAB

Q-B ranch i

(J -V +*\ -V A~VJ(J-iI) -2Av CKi (vAV -vB)K' (4.184ý)

6 VKI Vj~ 
2AvA + (2K+I)(Lv AAV) (4. 185a)I

6v K 9 F/JK 2 8vv 1  vK (4. 185b)

L~JK KJ(~JAJ)v

Equation (4.185) will be discussed later in connection with Eq. (4.223). TheI

constants Av0 and AVAC differ for the ± and IIbands (see section 3.4.3),*

and are given by:

*The // and ±- bands involve transitions for which the vibrational dipoleI

moment is parallel or perpendicular to the axis of the top, respec~ively.
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(a) Perpendicular (j-) Bands

Av - o(4. 188)

AV 2v ± - Hz z 4 190~~A A BL~m nin n) 1 /

inn

AV A'(I K ).Aeprmtr VAn VB A VV B Hz r gvnb (see87

Eq ) (5. 146) ands(.47)

A,. A0 Vr±Vn4:~(~ ) ,H (4. 190)

p0

V -v~ ~- ( 4 B , H (4.191

82 iB (4.2189)
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=-77 ý7 - 77 77

AVAVA VA c(A B c 0ty v -v Hz (4. 193)V
Brnn B n m

m n

R-Branch according to (4.184) and (4. 185). However the values of J for

each sub-band of given K star~t from J =K upwards,. that is J K as

illustrated in Figures 4-4 and 4-5. Also for the IIbands there is no

Q-Branch in the K 0 sub-band. Whereas for a linear mfolecule the weight

(2J+l) for a given value of J gave the number of states of equal energy,

for a symmetric-top molecule this weight gives the number of sublevels of

given J with different energies. With this difference, we can still use

Eqs. (4.115) to (AL.117), however in the modified form:

m2 3 H(J'IK ) 2 6(K )I 'J(t J 0 + K2(v _V)
(2+3 'm m' - mf m )V B m A B -

vm -6v Z' kT,'h H
B r)

(4. 194)

(2_1 H(J-IK){ + 6(1)V+) (

g 4J(J+I Hz'

9 vm 6J + (kT/h(4. 195)

(J-)H(J -IK 1){2 6(K} j(+0vB+ K2(Av)
(2Jmi I) B r - exp-{mJm' Hz_

6v 7 kT/h

(4. 196)
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FIGURE 4-4. SUB-BANDS OF A // BANI3 ANb COMPLETE II BAND
OF A SYMMETRIC TOP.- The sub-band. in (a) are directly
superimposed in (b). In both (a) n b) only a slight
difference between An - Bn and AM - Bm is assumed. In (c)
the same sub-bands are superimposed but with shifts cor-
responding to a much larger difference between An - Bn and
Am - Bm. Here also the lines of the Q branches have not
been drawn separately. The heights of the lines indicate
the intensities calculated on the basis of the assumption
that Am 5,25, Bm 1. 70 cm-1, and T 144 K. The inten-
sities indicated for the sub-band K 0 should be divided
by 2. (After Ref. 1O.)
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A
Here we have primed Z r since we shall assume that Jm (and thus Km can go

over into a continuous variable as before, and we set the factor f = 1/3
d

since we always have three branches for a symmetric-top molecule.

Now like for linear molecules, there is for symmetric-top molecules

such as pyramidal XY3 , XY4 ,and XYZ 3 (where the Y or, Z atoms are identical),

also a nuclear-spin-statistics function fI(KJ) which will cause alter-

nations in the intensity of rotational lines with different K belonging to

a certain J. We shall not consider the functions fi(KJ) here however,

since we are primarily interested in smeared-out bands for which the alter-

nations in intensity when normalized by the "sum-over-states" factor Z'
r

• faverage out to I. If individual (JK) lines are of interest however, Eqs.

(4. 194) through (4. 196) must be multiplied by f 1 (K,J) which may be obtained

from Ref. 10, pp. 406-411, for particular molecules.

From Eqs. (4.184) and (4. 185) we see that to first-order (ignoring

second-order terms) and setting J J and K K , we have for the P- and
m m

R-Branch that:

(dv)R= 2v8 dJ , (4 197)

while for the Q-Branch:

(dv)Q = - (2J+l ) AvB dJ (4.198)

To determine Z ' we first integrate over J keeping JKJ fixed, remembering

that for the P- and Q-Branches, increasing v means decreasing J and for the

R-Branch, increasing v corresponds to increasing J:
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ZI(IKI) I {gP(JK) + g.(J,K) + gR(J,K)} dv

S2J + 3 2+ 2- I (2+ 1)

3 K 3 6(J+ 1)

JJ1)vD + K2 (VA VB

{exp-((~) k/ dJ

= ~ xp (kT (K vAxKpV) (4. 199) i

Here we set /6E+) (J2 13

We next sum or integrate over all sub-bands K from -~to +:

Z'(IKj) dK= f 2(..k-.)exp- (k A)} dK=

BAJ

The result (4.200) Is the "classical partition function" for the

symmetric-top rotor (Ref. 10), and is obtained if we approximate J(J+I)
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.77,7?,,1,,,

by j 2  in the exponential of (4.199). If we reverse the integrations of

(4.199) and (4.200), and first integrate over IKI and then over J, without

the approximation J(J+2) j we get:

z,/ / f2J + 2J- d2+
r 3 3 3 :

J= 0 jKj :0

J~+ V+ K 2 ()
* ex~(J(~i B kTh(A -B 8 )~ IIdexp- d I) K VJB

kT/h kT-

2f (2J+ 1) exp- kThB•.

K1/2
exp- • / ) dIKI dJ = h(VA VB))

er (J(vA - vB)B/2) BJ(J+T) ) 'JI erf kh (2J+l) exp- d J

( kT/h' 2  kT/h

z " T •h(4.201)

r vB(VA - (B)

Here we made the approximation that erf{J h(vA -v )kT\} I which is not

bad, since erf (I) 0.84 and erf (2) = 0.995, and the integration of J goes

to infinity.
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Comparing (4,201) with (4.200), we see that the two results differ

by a factor (v - V 1/2 1/2 If v » v as is usually the

case, of course (VA - vB) / 1VA and the two calculations of Z'r become

equal.

It is not immediately obvious which of the two calculations is

more accurate. In the "classical case" it is assumed that:

(J(J ~ ~ /J VB.\__
exp k/ exp-k~h (4.?02)

while in the second case:

erf J / = I(4.203)
erf( / VA V

kT/h(.23

Both approximations are good for large values of J but for J - 0

approximation (4.202) goes to I as it should, whereas approximation (4.203)

is I while it should equal 0. We shall therefore assume that the "classical"

result (4.200) is the more accurate value to be used for Z'

r

With (4.200), Eqs. (4.194) through (4.196) become:

gP(J) = (2J+3) A H(J-IKI) 2 - 6(K) J(J+i) VB (vA-v) ! Hz'+

16 1/2 (kT/h) 3/ 2  exp-kT/h

(0 1 <c)

(4.204)
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Q ~(2J+ 1) V~1  H(J-IKI){2 -6(K)) (i)B + K'(Av)

R 2-I /2HJ-K){ AK) J(J+l) VB +K(VA-VB) 1

1/2 (k1/h) 3 /2  exp- kT/h B ,Hz
1

(4.205)

where:

IAVI (Vm ) (4.207)

VBV

Converting (4.204) through (4.206) next to v-dependent functions

with the aid of Eqs. (4.184) and (4.185), we obtain for fixed values of

K =±IKI ,that is for each sub-band of given K:

9PR _ I\J mn 2XAB V8 K~vA/9v (K)- 6TT 1/2 V ( kT/h )3 /2

(K (0,1,2,31...

+- +2X v K

(vp-V 2 8 X6K 4(A B Hz' (4.208)

4xpv B4kT/h

2351



~IV 2 x KKH' (429

v 3Tr 1/2 ý (kT/h)32ý 1
in Fiue 4- an 4- +2v ,ifo the difrn K0u-bns

Vxp IV mn v v 2 vA for th + bads inV-~ Eqs. (4420)0an

T erltos( .0)ad (4.20) 0o fol.2 thlotuso h uvss ob)

in thegurero4-4aanon4-54for0theadifrn (42 Kb engetsm small terms

in V V o the exrsin bands (se Eqs. (4.2107) and(4 9)
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(9 ~The total value of 9~v at a given v for all values of K is K
vC

obtained next by summing or integrating (4.208) and (4.209) from K -~to

K + Thus for IIbands, with )(AB =0, we get:

9 vP (v) 9PR (v,K) dK = (n l/

(0 < V < ) I6 kT )(A

'V m/ exp- (VB krh , zn(42)

erf ( V24vmnh 4.11

9(V) +(O9QvK K h VA )/2.

/f g~v, d kT) (V V

(v mn o

(V ~ ~ <-

erf( V / exp-(~~ ~ Hz- (4.212)

The error function erf(x) 0.8427 for x I and erf(x) 0.99532

for x 2. Therefore, except for values of v very close to v mn ,no

great error is made if we set the erf(x) functions in (4.211) and (4.2 12)

equal to 1. Also in view of the discussion surrounding Eqs. (4.200) through

(4.203), it appears that we should let the factor '~'Iv -12 1/2s~I

Thus finally:
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PR VI - mn I (( -vmn) 2

9 g (v ) Jxp- Hz- (4.213)
v 6vB kT/h 4v~ kT/h H 423

(0 < < 
J

and:

g ) h exp- Hz-V (4.214)
S 3tB kT (kTh

(0< v< v or
mn

Vmn < v < )

For the . bands with XABV (VA - vB)/VB , we get in the same way:

2

PR 1/I 1/ 2  ((V- m)
S 3yAkT/h exp-

(a A v 4v kT/h

(v o< v < )

-ep~ vk exp=vA / 1+ v-v!(2 12 )2

er(IvA "VAI -)41V V

___ _ mnA

- (v v Vm)2 (vA v8 B) I1/21"4vf AAv kT/h 1 B --A'l

[ *nly the posit-ive square r'oot is to be taken throughout.
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,,/2 I 1/2 Iv A
9 (V) = A.exp- 

i

-6vBIT/h V V) k kT/"hTh

(0 < V < V +(vA-vB)B or

V (vA+) < v

( A B)< +) <)

1v 1/2

V A " V B V A((9m- V) + ) + )+ } Hz

erf t2 kT/h V 
+

(4.2 15b)*

Tob cnitet e hl st - 1/2 1/2

To e onisen• e hal et(VA BvB) -. VA as we did before. Then:

PR (V) ( '(V kT/h ) xp- XP ; kT/h +

(o< V, < 1 L #

Sexp- (V -T/ ((2VB V A I) + +

4 VA kT/hB VA T i

t erf +ZB VA I) + 1n+1)Hz

B (I) A( -n VB)

V(4 2/ 15bA

- (V - Vm) (VA - VB) AI/21

Y - 44

-I 3r 4TrAYB kT/h 4v HzB (4.26a

(0 < V <

ex- (V--2 3 A,2 +

4v A T/h (12v, - ,A



Q.i F IV VI VA _VB

- ~~mn A B''B fA 0

Vm+ (vAv)B < V <0ý i f AV~ < 0)

( v A 1/2 V'\ Bi V (BBI nV 1/2

+ VB VA V8 ( Vni

B k(V A vB)

erf~~(4. kT6hbB

'A comparison of Eqs. (4.2 13) and (4.214) with (4.1I71) and (4.172)

shows that the c;ontour functions of the P- Q-, and R-Branches of a HI band

of a symmetric-tzop rotor are the same as those of a linear moleculiz. How-

ever for a _L band the spectrum is quite different. Figure 4-6 shows V

n.adium-resolition spectra of the vibrational emissions/absorptions of a II

and a .i band of NH .The parallel v band of NH shows atyia P-
33

and R-Branch structure like that of a linear molecLie, except that there is

a doubling of each line which is due to "inversion" (Refs. 10 and 16). That

ýs each rotational energy level has two components, Jue to the fact that the

N in NH can be below or above the H3 plane and oscillates between these two
33

confiquraý.,ons. Except for the lightest symmetric-'op rotors such as NH
3

this osci1Vtion is so slow however that the doubling is not noticeable and

can be neglected (Refs. !0 and 16). The (v 3 + V4) perpendicular band of NH3

shows a typical series of Q-Branches (due to the fact that AVAi 0), whose

*Only the positive square root is to be taken throughout.
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structure is explained in Figure 4-5. The interspersed P- and R-lines

are too weak compared to the "bunched" Q-Branches to show up in the

medium-resolution spectrum of Figure 4-6.

To determine the band-spread and shape-function, we encounter the

same problem as we did with linear molecules if we try to set b(vv nAV

= I at v = Using the same arguments as discussed in connection with Smn

Eq. (4.150), we shall choose therefore to set:

AV = ,4VB kT/h , Hz , (4,217)

so that for the //-bands the dimensionless shape-function b(v,v ,AVm)mn mn

equals:

IV - v
bPR V ) =v exp- _ _

!i! (0 < V < o .3 ,!BkT/h\ 4B /

•:H /-bands /)
b( mn(v

3 Av AV (4.218)Amn mni

b (V,) ) 2AVB exp- ( kmn•V/(Q vv mn kT/ \ kT/h1
k;•mn< v < Vj

v < v < C
I; //Bands" 4/4 I

exp- . B. (4.219)

3 EBAV mn ýJBAVmn
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For the . bands, the shape-function b(v•vm AV becomes:

PR2 _ mn
b (v'vn'v) = exp- ( V +

V0 <v <
\ L bands ])

)2 2 ( V)1/2

JV BvBV A I I + +v A2 1v A -

exp- - mner2 /(A A•mn •2 Vr m2Bn Al +

•VA mn (I2B A ) \VA4(VA- vB) )A Vmn +

2, 1, 1/2

'V IV( v, Vm, AVn)=

e (B •B mn A B

•-Vm+( A-V)• n B Al A% for Bv <O

. rf Lads

i\VA/AA mn

(4.220)

erF•BVB / AV B)~lmnv I/

B Av mn 0; (-vA.B) VA+I
• / , •1/21/2

v er B m~n mn 3 VBA'VB V +

(0 < V < vmn+(VA B for Av B > 3 BAnn VAV
v V V < , for AV < 0)

.i Bands (4B~~- V-

exp-~ 2(Bvvn .2 J-

~B mnV

4v B~vA V B 1/2 VA VB (Y IV mn- V )1112

2 1/2 v VB (K VAIV BI )/
A B) (VA A B 1)1n I .-

(4.221)~
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For the detailed rovibrational structure we find similar to the

linear-molecule case that:

S(VVmn'AVm.) hPQR (J'K'vmnAVm) K(v'VjKAVjK) Hz-

(4.222)

where 9jK(V'VjKAvJK) is the pressure- or temperature-line-broadening

function given in sections 4.3 and 4.4 for a particular line with a given

value of J and K, and where:

1/2 1/2 )
(A B

hPQR(JKv r) VV VB... I) +
"v mn' mn 1/2 A- (2J+)H( VmnVj)H(J)H(-jQ)

31T kT/h mn

+ 6 VK (2J+I)H(vjK v )H(J-I)H(- v + B(J+2 ) 6 VKm H(jI) HV

mn tB

[ J(J+I) V + K

H(J- IKI) 2 8(K)? exp- kvTB)

(4.223)

where as before of course J = 0 , 2• 3 ..... , and K = -J, (-j+I),....

O .... J-1, J, and there is one line for each combination (J,K). The

Qparameters v A VJK , and 8vK were given by Eqs. (4.184) and (4.185).

4.7.3 Spherical-Top Rotors

For" spherical-top molecules, the rotational frequencies are given

by (see Eq. (3.1R4)):
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P-Branch (- sign) and R-Branch (+ sign)

sp ) m 2vB• A + Hz (4.224)
(Jmn B

Q-Branch

v = V - AVB(J 2 
- J) , Hz , (4.225)

m n

where:

V Bm + B 2 BmmB( -Im) , Hz (4.226)

V B = c = c(Bm + B n)/2 Hz (4.227)

AV c(B B) c 2 ( 2 Hz (4.228)
(m n

Here the Coriolis parameter C and the vibrational-rotational interaction

B
parameters a, were discussed in section 3.4.4. Values for C were listed for
some selected molecules in Table 3-14; Herzberg (Ref. II) gives values of

B
0i in his tables for a few molecules. In the above we neglectcd some

comparatively small terms, and we approximate v c B V
B m Ml

The frequency v is as before the pure vibrational frequency

change in the transition m- n given by Eq. (4.88).

The band-contour functions for the spherical-top rotor are similar

to those of the syniietric-top (see Eqs. (4.194) through (4.196)), except that

the statistical weights are different (see Eq. (3. 185)), that is:
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_____2 mm + Hz) (4.229)
(2J + 3)2 I(J + n VB (J + 2 m)9• vP(Jm fl m exp- m Hz (429

6 v kT/h , z
(0<J <C) VBC r

( 2J + 0)2 m(Jm BI)VBg(Jm fl exp- m ,Hz" (4.230)

() 6(Jm + I) AVB Z' kT/h jl<m

S(2J- I2 JmB (Jm + 1 2 Cm

ivR(Jm = (2J m )m Hz- m .231
Sm 6 Z exp-/ kT/h Hm))

g (t J <B) (2J r

m

Here we took account of Eqs. (3.168) and (3.183), and assumed approximate

statistical weights with averaged nuclear-spin factors f, , that is:

w +)2 (4.232)

The actual statistical weights if nuclear spin is properly accounted for

(Ref. 34) can deviate considerably from (4.232), particularly for the lower

J values and small values of I as may be seen from Table 4-5. For higher

J-values and higher I-values, the approximation (4.232) becomes better and

better as may be seen by comparing the various values in Table 4-5 with

I- those listed in the last column. The values of f1  for an XY4  mol.,cules

with four identical atoms Y, each with nuclear spin I, are accoru_. " to

Table 4-5 approximately:
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TABLE 4-5. ACTUAL AND APPROXIMATE STATISTICAL WEIGHTS OF THE
ROTATIONAL LEVELS OF TETRAHEDRAL XY4 MOLECULES TAKING NUCLEAR

SPIN INTO ACCOUNT (After Refs. 10O34)*

Actual: Approximate: •

wJI = fI w I(2J+I) = w I(2J+l) wjI fI(2J+1 )2

1= 0 1= 1/2 I= I I=3/2 Al I I*

0 I x I 5 x I 15 x I 36 x I f x I x I

Ox 3 3X 3 18X 3 60X 3 flx 3x 3

2 Ox 5 5X 5 30X 5 100x 5 f X 5X 5

3 1 x 7 11 x 7 51X 7 156X 7 fix 7 x 7

4 I x 9 13 x 9 63 x 9 196 x 9 f x 9 x 9

5 Ox II x II 66X II 220X I1 fix II x II

6 2 x 13 21 X 13 96 x 13 29 2 X 13 f x 13 x 13

7 1x 15 19 x 15 99 x 15 316 x 15 f x 15 X 15

8 1x 17 21 x 17 l ix 17 256 x 17 f x 17 X 17

9 2 x 19 27 x 19 132 X 19 412 x 19 fI x 19 x 19

10 2 x 21 29 x 21 144 x 21 452 x 21 fI x 21 x 21

1I IX 23 27 x 23 147 x 23 476 x 23 f x 23 x 23

12 3 x 25 37 x 25 177 x 25 548 x 25 f x 25 x 25

3 2 x 27 21 x 27 180 x 27 572 x 27 f x 27 x 27

14 2 x 29 21 X 29 192 x 29 612 x 29 fI x 29 X 29

f5 3 x 31 24 x 31 213 x 31 668 x 31 f X 31 x 31

*The four identical atoms Y are assumed each to have nuclear-spin I.
, 3I = 0,,,I 0.08 ,f (1 1.05 ; f(I = I) 6.71 ; f(I -

IS21.33. These values of f I are averages of J =10 to J =15.

247

.-.. ,,. -- . - .. . . -



f(1I 0) 0.08 (4.233 a

Yf1( 1/2) 1.05 (4. 233b)

f(1( 1)~ 6. 71 (4.233c)

f(1( = 3/2) 21.33 (4. 233d)

From Eq. (4.224),, we obtain for the '-and R-Branch that:

dv ±2 vB dJ ,Hz ,(4.234)

P-Branch~
P+ R ranchJ

while from (4.225) we get for the Q-Branch:

dv A V (',-J 1 ) dJ ,Hz (4.235)
B

From (4.234), (4.235), and (4.229), (4.230), and (4.231), we get t-nen for Z':
Y. r

+/ gQ/ dv - J I(2J + 312
r r vv 3 [

y= 0

e (i J' + (1i+2C) J + 2cm)Vm 2 )

kT/h(

(J' + (4-2C)m J + (3 -2C ))vB 1+1 +)

expk m + (2_J+3)~ 2J exp- MJI(+2Vn dJ
kT/h j 2 J4 2 ( kT/h jJ

'z 2J2 exp-t i~ dJ -. f~/ i)/ (4.236)
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K) With (4.236), Eqs. (4.229) through (4.231) become:

P(2J m+3)' V B e~ V B (J m + )(Jml+2Crn) ~,H

v(JM) 1/ 32=p kT/h Hz-

6T (f-C )(kT/h) 1 (42)

Her (4-237)sagi gve y 420)

Noeta9h`aco4acl:he esbttte 'i 429
1/2

through(2 (4I),) Of couse as metoe ale h ueo q 22

(4.225IT Bvsnet

PR m mn nmK. (in) 1/2kr)3/21  -I )2H
(a ~ ~ 6 vI- )(1/kT/h~) v kTh

m (4.230)

HereAV / isagai gien b (4249 )



S© v tmn' l
K) •gQ(•) = L6 v, v 12kTeXp" , Hz" (4.241)

v(0 • < if/2 )3/2 kT/h
•i: mnB

•"• •mn < V < if AVB < 0)

Here we have again omitted the constants 3 and I in comparison

with 2J in the first factor and some other small terms in the exponential

as we did before for the other cases. This amounts effectively to a small

shift in the value of v which we shall neglect.

For the band-spread function we take again (see the discussion in

connection with Eq. (4.150)):

AV = 4( I-1 m)2 vB kT/h \ Hz (4.242)

Then the dimensionless shape-function b(V),VmnAVmn) = (AVmn) × g()'V mn'L\' mn)

becomes:

PR4(v V -v\ (R mnjmmn)2
b(\J,v &~V )p (423

•V mn mn = - n exp- (4.243)
3n Av2

(0 S v < mn) mn

16( 3/)~~2Ivv i/2 ( )2~jv v
"•m 8B lmn"• ("m 'Bl'mn-vI

b(v•v~mnA mn= I/2 3/2 2 exp-

(0 < V < V if Av > 0; 3rt B AVmn 9BA\mn

Vn < v <" if AVB < 0)

(4.241.)

250

. ..



For the detailed rovibrational structure we find similar to the

linear-molecule case that:

9 PQR (V," V) h PQR (JýVmnAVmn gj(v~vj,Avj) , lz ~ (4.245)

Here, as before, gj(v,vj,Av) is the temperature- and/or pressure-broadening

line-contour function, and hPQ(J, Vn 'Lmn is given by:

h PQR (J'Vn' )AV ) 1/ (2J+3)' AV
v 'm I/ kTVm

exp- ~ xp ( (Jl)Hv _ H-Q

mn

(2J+ 1)nd {expe(vB(J+(JJ±2Cm)v (4.246)

As emakedat hebeginning of this subsection, the nuclear spin

staistcseffect on each J-line was smoothed, whifch is particularly bad

forlowvalesof J and I. Thus (4.246) is only a smoothed approximation.

To orrct or-the nuclear-spin-effect, the parameters (2J+m)2 in Eq. (4..24~6)

should be replaced by:
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Q,) (2J+m)' (2J', I)2 I (4.247)
f

Here wji is the actual statistical weight, values of which in the case of

XY4 molecules may be taken from Table 4-5; J' = J + (m-l)/2.

The rotational lines in the P- and R-Branches of spherical-top

molecules apparently behave rather regularly with a rotational line spacing

of 2v (I-C) according to the above relations. Figures 4-7 and 4-8 show
B

indeed such a rather clean band structure for the infrared-active fundamen-

tals v and v of the tetrahedral molecule CH4 (see section 3.4.4). The

V4 band (and also slightly the v3 band) shows a triple splitting of each

rotational line which is due to Coriolil.. perturbations by normal vibrations

other than the one experiencing a transition (Ref. 10). These perturbations

can be calculated by a more detailed theory that takes the Coriolis iiter-,

action from all the vibrations into account (Refs. 24 and 36), instead of

the approximate "first-order" C-factor treatment which only accounts for

the Coriolis effect by the one transitioning vibration (see also the

comments In the paragraph following Eq. (3.176)).

Resolution of the rotational lines in the P- and R-Branches has

only been observed experimentally for the lightest spherical-top molecules

such as CH4 . For heavier spherical-top molecules such as octahedral SF
4 6

and UF6 , the lines are so closely spaced that the best grating spectrometer

still cannot resolve them as may be seen in Figures 4 -9a and 4-10. Only

with "tunable laser spectrometers" which have become available in the last

few years, is it possible to resolve the hithertofore unresolvable bands of

the octahedral XY6 molecules, as shown In Figure 4-9b.
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3.1 /Mm 3.3 pm 3.2 /lm

C

j .... i i i p

-30 l ,.

' 5 I- ' I I I 1 ,
361*

.1 3 1 0c '2900 cm1 2950 cm1 3000 cm" 3050 cm"1 3100 cm 3150cm

FIGURE 4-7. FINE STRUCTURE OF THE FUNDAMENTAL BAND v OF

"CH AT j.31 p,. The length of the absorbing path was

42 cm at atmospheric pressure. The numbers written on

the maxima are (J-1) values, where J = sup(Jm Jn).
(After Ref. 10., 35)

B.0 pUm 7.8 pjm 7.6 upm 7.4 pm

C

80 1-
4 ' I

0 40 , ,,, .

-. '.. 'Ii"•'
V) IV<• 30" ,., ..

12• CM 1300 cm
1  1350 cm*

FIGURE 4-8. FINE STRUCTURE OF THE FUNDAMENTAL BAND v OF

CH AT 7.65 p. The length of the absorbing path was

2 cm at atmospheric pressure. The numbers written on

the maxima aro (J-0) values, whore J sup(Jm, Jn).

(After Refs. 10, 35)
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- (b)

(a) GRATING SPECTROMETER SCAN*

SF PRESSURE: 0.1 TORR
6~d-00 cm- RESOLUTIONCELL LENGTH: 25 cm

.BRUNET AND PEREZ, 1969 (Ref. 37)

+: + +• +n + (

U.

BANDS

940 45 950

Photon Frequency, cm"----

(b) Pb. 8 8 Sn0 .12Te DIODE LASER SCAN

SF6 PRESSURE: 0. I TORR
•'CELL. LENGTH: 10 cm E t r n b u p i n C l

RESOLUTION: 3 x I0-6 cm"

"**D, HINKLEY, 1971 (MIT Lincoln Lab; Ret. 28A

I I

IFundamertal Rotatioral

947.7U 947.75 947,80 947,85 947.90

Photon Frequency, cm-I -

FIGURE 4-9. ABSORPTION SPECTRUM OF V3 BAND OF SF6  PROM

(a) HIGH-RESOLUTION GRATING SPECTROMETER; (b) TUNABLF DIODE LASER
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Figure 4-9b reveals that each P-Branch rotational line of an XY6

(i) molecule is split into an apparent "jungle" of lines. This jungle is due

not only to Coriolis splittings of each line by the interactions of the six

normal vibrations in XY6 ,but is also caused by the fact that the spectrum

h Iis that of a superimposition of many "hot" bands and not simply one "cold"

band (Ref. 37). For example in the case of Figure 4-9a, not only the vibra-

tional absorption 0 v is observed, but also vh - v 3 + Vh, where Vh

S5 2v 66 . . . .  etc. This is because at room temperature (which is usually

the observation temperature), many of the other normal vibrations with low

energy values are excited by thermal collisions, riot only singly but also

doubly, triply, and in various band combinations. For the heavy molecule UF6

for example only 0.4% of the gas at 300 0 K is in the non-excited ground

("cold") state and 9S.6% is in various excited ("hot") vibrational levels.

For the lighter molecule SF6 , the "cold" molecular population amounts to
6I

about 30% (Ref. 37)."

The various "hot" bands are shifted with respect to each other due

to the anharmonic constants x , that is:

= V Ah (4.248)

where:

vA~+(~ ~ )v (4.249)

VlU [(vcy 'n vh + n orhJ

which is obtained from the relations given in Appendix C.

Clearly each corresponding rotational line from the P- or R-Branch of one

*The heavier the molecule is, the lower the frequencies of the normal

vibrations (see Table 3-10) and thus the larger the number of hot bands.
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hot band does not fall on the same line of another hot band. In fact the

shifts are large enough that the hot Q-Branches of the v band of SF6 can

be distinguished in Figure 4-9a as separate peaks from six SF hot bands
6

as indicated.

Figure 4-10 shows the infrared-active fundamentals v3 and v of

UF w'Lh a band shape similar to that of SF f V -band. The central peaks
Y-6 6 v3 bad Thcetapak

are a composite of many hot Q-Branches. Fiyure 4-10 shows further the many

combination bands that are possible in a molecule with many normal vibrations*.

Each ahsorption shown in Figure 4-10 when investigated with much higher res-

olution will show a superposition of hot bands with a P-, Q-, and R-Branch.

However in Figure 4-10, this structure is not resolved enough except for the
V and v fundamentals, where it is barely noticeable. Clearly for observa-

tions such as shown in Figure 4-10, our "smoothed" band-contour functions are

more than adequate to calculate absorption profiles.

4.7.4 Asymmetric-Top Rotors

For asymmetric-top rotors the allowed photon frequencies in

vibrational absorption or emission bands may be classified in three groups,

called "Type-A," "Type-B," and "Type-C" bands (Ref. 10), depending on

whether the vibrational dipole moment e of the a-vibration transition

(see section 3.3.2) is along the least moment of inertia (IA) axis a , the

intermediitc moment of inertia (I) axis b , or the highest moment of

inertia (IC) axis c . This is thus a "three-dimensionalization" of the

symmetric-top case where we had only two types of bands, labeled // , and

*lhe unusually high intensity kF the (v3"v4-V6) band in the vicinity of

670 cm is due to Fermi resonance with the strong nearby v3 fundamental

(see pp. 265, 266, Ref. 10), and with the (v 2-+-v4 ) band. Some authors have

labeled the band it 670 cm-1 as (v 2 •v 6 ), but z I ; 0 for this combination

band.
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L ,for the case that e was parallel or perpendicular to the moment of

inertia axis of 1B (see section 4.7.2).

The transition selection rules for the three types of bands are

(Ref. 10):

Type-A Bands

+ + - + , and + - -- - (4.250)

Type-B Bands

+ + - - - , and + - - + (4.251)

Type-C Bands

+ + ~--+-,and - ---- (4.252)

where the first sign in the designations (++) , (+-), etc., for a rotational

state indicates whether the rotational eigenfunction is symmetric (+) or

antisymmetric(-) for a 1800 rotation about the axis c and the second sign

gives the rotational eigenfunction's symmetry property for a 1800 rotation

about the axis a (Ref. 10).

In addition to the symmetry selection rules (4.250) through (4.252),

we have the general selection rules:

J 0 ±1 ; J = 1-4-m-J 0 (4.253)

and:

(Overall Species X) --- (Overall Species X) , (4.254a)

(Overall Species X)-+- -(Overall Species Y) , (4.254b)
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where X is the overall group species of the molecule (see Ref. 10), that

is X A. , B. , E, or F (i has various possible designations- i = I,
I i 'i

2, 3, or i Ig, lu, 2 g, 2u. .... , depending on the type of molecule). By

"overall" species we mean the overall symmetry of the total wavefunction

v r e v r! lV 4 , where 4 , 4 , and r refer to the purely electronic,

vibrational, and rotational eigenfunctions, respectively.

With the above selection rules and Eq. (3.192), the allowed photon

frequencies in the P- and R-Branch of an absorption/emission band may be

written:

P-Branch (-) and R-Branch (+):

(J 0. ± 2v J + A J+ FjM -H

SVjW vPR~jW = V +_mn BC BC VABC L - W(J-I) Hz ,

(J = sup(J, J))

(J 0 ) (4.255)

where v is the vibrational level chanye as before and:. wh re mn

V.BC 4 v 5 = £B + C) Hz (4.256)

•--C 2. ( VB ) c2 B

VB (vB = B " (B ) , Hz (4.257)
m n

V C 2 c n (C ± ) , Hz (4.258)
•; m n

LX BC (V ' vc - v. ) , Hz (4.259)BC 2 B -"B •
f I l n Ill n
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VB C -A BC
c AA B -- C Hz (4.260)

'ABC A 2 -2 ,H

VA = (VA + VA) = • (Am + A) ,Hz, (4.261)

m n

and W(J) and W(J-i) have a series of 2J + I discrete values given by

. .PR
Eq. (3.193). Thus v (J) as given by (4.255) is multivalued, having

(2J+l) sublevels for each J. For the Q-Branch we have:

0.-Branch:

where V vn +i(j+l) + VABc(W J) - W(j)) , Hz , (4.262),! mn B B

where W(J)and W (J)are again W values determined by Eq, (3.193) but

where the second value W (W) or W (W) in the transition is restricted by

selection rules for Q-Branch (AJ=O) transitions.

Clearly there is a considerable splitting of each rotational line

of given J and because of this, it is very difficult to write down general

relation5 for every asymmetric-top molecule. Each molecule is best studied

separately. We shall primarily consider the asymmetric-top molecule H20

because of its occurrence in many applications. For other molecules, Refs.

10 and 16 (and the references given there) should be consulted.

For the H 20 molecule, only Type-A and Type-B bands occur for

respectively the v3 vibration (Type A) and the vI and v2 vibrations

(Type B) as shown schematically in Figures 4-11 and 4-12. Type-C bands
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can only occur for molecules with more than three atoms (e.g., the v6 band

of H2 CO), and thus H 0 has no Type-C bands (Ref. 10). Both the Type-A and
2 2

Type-B band spectra of H20 look rather complicated, the main distinction

being that for "Type-A" bands, a considerable fraction of the Q-Branch lines

fall near the band center similar to the // bands of the symmetric-top,

while for "Type-B" bands no Q-Branch lines fall in the center but they are

dispersed through the P- and R-Branch lines analogous to the - bands of

"the symmetric-top.

That it is possible to calculate all lines of an asymmetric-top

molecule provided sufficient data are available is evident from Figure 4-i3,

where Nielsen's calculations (Ref. 39) are compared with the actual exper-

imental fine structure of the 2v band of H2 0. In many applications however,

the major portion of the complicated fine structure is lost as shown in

Figure 4-14, where the infrared absorption spectrum of HO is shown as

observed by a medium-resolution sensor.

Many slightly-asymmetric-top rotors show a Type-A spectrum very H

close to that of a //-band spectrum of a symmetric-top rotor as illustrated h
in Figure 4-15. Therefore in many applications it appears to be sufficiently

accurate to model the Type-A band-contour functions of an asynmmetric-top

after the //-band-contour functions of the s'nmmetric-top, making the

following substitutions:

K' W (4.263)

BC

II
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With the substitutions (4.263) and (4.264) we then obtain, using

)(4.204) through (4.206):

gp(j) (2J+3) vA1 2 H(J 2 -W) uPR(J'W)

( 13I/2 (kr/h) 3 /23T (o< J<

J(J+ )) 2 (vA 2 1

exp-[kT/h V, Hz (4.265)

(2J+ ) vA H(Jw)/2 u (1,w)
Hj(j)

3•1/2(j+1) ýBc(kT/h)3/2

(I <J< •)

~~~b VC)"C ' " l-• J(J+ I) 2B + Wý .vA •"-1

exp- kT/h ( Hz (4.267)

9v(J 2J-I) v•/ H(J'-W) 0P~ ,W)

11I2 kTh3/2
3r sPL<t/)

J0.1 ) 2 ,WvA " 2 -
exp- ,Hz (4.267)

kTih

Here, for Type-A bands, the factor u(J,W) is given by:
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PR,
u•W, W) = (2 - 6(W)) (4.268a)

(Type-A bands)

.Q(j,w) 6(w)) (4.268b)
(Type-A bands) =(

IJ
where 6(x) is the Dirac delta function defined before (see Eq. (4.149)).

The factor is given by:

6C M n c r-B(... .. Ce +- -I• C(:lm" von)

BC = - T(Bm+ Bn+C + C+ ) V Lc Vnn

(4.269)

Values of , , and C for H2 0 are listed in Table 4-6.

The v3  vibrational band of H 0 which is of TypL. A, can be fairly well

approximated by Eqs. (4.265) through (4.269).

The v-dependent 9g-functions for Type-A bands become, similarly

to Eqs. (4.213) and (4.214):

,I.

911(vV ,&vexp- Hz_________)gv.R mn mn) (VB + vC) kT/h - 2(v + C) kT/h• Hz (4.270)[0 :5;V < COB

\Type-A Bands)

9v(V mn*AVmn) AV exp- IcTh Hz

/0< f VBC > CcT~H'(4.271)
V") m < V < W ,if AVB <0
Vmn ifLBC <

Type-A Bands
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The band-spread AvMi for an asymetric-top rotor we shall take

to be;

Avw / 2(vB+ •C) kT/h , Hz (4.272)

and then the dimensionless shape-functions b(VImnAV for Type-A bands

can be written;

PR(~v2 Iv-Nv1 I V n2
bPRV mnv, 3Av )AV (4.273)

v mnn

(Type-A Bands)

U 2(vB+vC) e (- "-C'm,-V.
= BCVmn )Vexp- BV(4.274)

lfvc>\ Iim t CAmn%ý

(: mn SV<=, if AvBC< 01

Type-A Bands

For Type-B bands, the selection rule (4.251) applies, which in
effect forbids transitions with AK+ = i for all branches and also AK+I 0

for the Q-Branch. Thus AK± = 0 t2 .... apply to P- and R-Branch transi-

tions and AK+ = ±2, .... to Q-Branch transitions as indicated in Figure 4-12.

The meanlng of the parameters K and K_ was discussed in section 3.4.5

(following Eq. (3.208)). Note here that in contrast to symmetric-top rotors

for which AK = 01 ±1, the asymmetric-top rotor can have AK+ = ±2 ±3, etc.
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I

As shown in Figure 4-16, the Type-B band of the asymmetric-top

goes over into a . band of a symmetric-top or linear rotor v!..en

p = vB/VA - 0 , that is when vA -. Although the similarity of

Type-B bands and L bands is less good than that of Type-A and S/ sands,

for many applications it appears satisfactory to model the Type-B bands of

the asymmetric-top rotor after the L bands of the sywfinetric-top rotor

using again the substitutions (4.263) and (4.264).

Because of the selection rule (4.251), instead of Eq. (4.268),

we now have to use the following expression in the relations (4.265)

through (4.267) for Type-B bands:

3g

u PR(JW) - I - 6(W-I) (4.275)(9) (Type-B Bands)

uQ(J,W) = H(IW/ 2J -.. w ,/2 - 2) (4.276)
(Type-B Bands)

Here H(x) and 6,x) are the Heaviside unit step function and the Dirac

delta function defined by Eq. (4.149).

The band-shape function for Type-B bands, modeled after

Eqs. (4.220) and (4.221), then takes the form:
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assumed. (After Refs. 10, 39.)
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2 V + -C12/

b (v mn.m AV )=n 3A - g 21TVA jexp r( m in n

exp-~ + 1 +)2v BVC V;C VBVCVAI

21v VVIn IVB+vc/V B + /2/ c V+VC IVV \2
36v -T. (2v I Vexp-~ 2v(V

LemIBn AI A- BV-V~ CC/ A Vmn/

IV-V + !
-erftI +~B(.2~Lf

b(vv 3)C-Avn A VAV Vi)

4 1O~~v,~nin'mn = VB + (2VA1/2/
(V VB AVBC>O

VA - B C
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<1)~~~ + Vc(A M /

erf (2 &V2

" %6C "rn

______((4.c2B 1 B) I

(2v A V B- VC 2BC VC)IJVI )+ +,

_) Of course the fucin(v,4mnAm)aegvn y(.7)ad( .278)

divided by Avmn ' sic vV3m3~n = b(•~nAm)Am

For Jhe detailed rovibrational structure of an asyrmietric-top

rotor we can write;

gPRov v vn mn hPQ(JjWVmn•A~mn) gj, w(v•vjW, AvjW) Hz'II

(4.279)

kHere gJWis the pressure or temperature li ne-broadening function given

in sections 4.3 and 4.4 for a particular line with given value of J and

W,• and;
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1/ II + mir

Q= (PA11(V 'W/ .)(2+3)H(Vm..jW)

SH&-vW)H(J)UP(J,W) + (2J+I)H(vjWV)H(_vw)H(J.I)

mn

PR 6-V-- + 1 QW

8VW 2J+ H(.v)H(J- i) u(j,W)
•~ ~ ~~~N uP+jW V' B( +

ex tJ(J') (1) - C + W(VA IVB}H(J 2  W)- . kT/h

(4.280a)

PR W n

where for Type-A bands u (J,W) and uQ(JW) are given by Eq. (4.268), and

for Type-B bard- they are given by Eqs. (4.275) and (4.276). The pararleter

VJW and VJW were defined in Eqs. (4.255) and (4.262), while 6vw and 6v

are defined by:

VJ W+2TVABC(W(J) - W(J-i))

6VW VABc(W(J) - W(J-I)) J gjW(vvj,,Avjw) dv
W ABC (W~j ..W (Js )

C(=VjW "•- ) (4. 280b)
_ W 2 'ABC~() wJD

VQ+-LAW V
JW 2 Q ABC

6 VW V VABC AWQ gjw(v"Vjw, Avjw) dv (4.280c)

"TJ W. 2 VABC

.AWQ = W(J) - W(J) - W(J-l) + Wn(J-1) (4.280d)

He,,a VABC was defined by Eq. (4.260).
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4.8 VIBRATIONAL BROADENING OF ELECTRONIC TRANSITIONS

4.8.1 Diatoniic Vibrator,

To obtain the smeared-out band-shape function of a vibrationally

broadened electronic transition, we proceed in an analogous manner to that

given In section 4.7 for rotationally-broadened vibrational transitions.

The fraction of molecules in an electronic state A, vibrational state v,

and rotational state J is given by:

I..
NAv, J -N0 fA fv f (4.281)

where N is the total number of molecules, f and fj were given by I

Eqs. (4.80) and (4.81), and:U

hV.4
wh exp- \•-

weAp-hZA (4.2P!)

Z = wA exp-(TA) P I , for T 4 3000°K (4.283)

A HA
Here hyA is the energy level of a general electronic state A.

Ignoring the rotational substructure, the energy levels or

freqLencies of the various vibrational levels of a diaiomic molecule in

the electronic state A are to first order given by:
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=V V + Vvi- V + vv+ )ve- ( )+ (4.284)"AA Ai A i+

where:

= X- Xe Ve. Hz (4.285)
I I I I

Here v is the fundamental vibrational frequency of the diatomic moleculee.

in the electronic state i, and x is the anharmonic coefficient of theI 1e i

diatomic vibration discussed in section 3.3.1 and Appendix C. The values

of the vibrational constants ve. and Xe. depend on the electronic level i f.
that the molecule is in, that is v v and x 4 x in general. If

e e e em n m nno subscript is used on ve and Xe it is assumed that the naklecule is in j

the ground electronic level. -1

According to Eqs. (1.23) and (1.24), the number of photons emitted

from a diatomic molecule at Jlectronic level Am , deexciting to electronic

level A is:
n

dNq N AoAFi 

t
_ = No fA A N F vib/rot f (4.286)

dt A mn m mn mn vJ secm elc elc

in which:

N= No fA (4.287)
m

In what follows we shall not specify what particular rotational transition

occurred (any allowed one can take place), but only what the vibrational
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energy perturbation is since the latter is a much stronger perturbation

-than the former. Then we can simplify Eq. (4.286) to:

dN•

-~ = N A0  Fvib f = N A0  Geic photons (4.288)
dt m mn mn v m mn mnu sec

elc Vn elc

where:

F Oibir

F = Wv(Vm) (4.289)
m M

GeC= FVib f v C = b [exp-(vm hvem/kT)]/Z v (4.290)

Here Z is the nurmalization factor which in the case of a diatomic

molecule equals Zv [ I - exp-(hAT

Now by the same reasoning as was given for OCrot via Eqs. (4.97)mn

through (4.1i00) we must have that:

cVib =w (v) (4.291)

Further since for a diatomic molecule always wm = I, we get that:

lC() [ex /(kTZm)/ (4.292)
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'A
emittedDefining next the function 9e(v) for the strength per unit of

eitdphoton frequency range according to Eq. (1.29), we must divide L
Eq. (4.292) by the parameter:*

dv d -(I~:+Ixe ) -ldv i, -l H
ddv e dv

(4.293)

which we shall develop further below. Thus:

v hv

~ I ~( d& exp-(
i Ig~v)E (G Hz- (4.294)e, I Ilid /A

mm

therefore the normalization factor should be redetermined. The approximation

Ve [I (2- + in (4.293) is quite reasonable usually. ~

The photon emission frequencies v of vibronic transitions are

according to Eq. (4.284):

v~v+ +v +v2

mn V v = n(m~ Ve (v+ X Ve+

ffi(n v2V -n (vn 2~) e = ) eI

n 2 en in 2) en e n

k v~+ (vvm -vovn - (xe e m Xe ye vIM ,z (425
nmm n n) m, mKi

*The approach followed here is generally similar to one given in Ref. 41.
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where:

V )V (4.296)
hin A Am n

v~ V'V( -v ) (x V x ~ V) Hz (4.297)*

V =V eVe ,Hz (4.298)*0. e. i
The subscripts m and n on v, ve and xe refe to the upper electronic

state m, and the lower electronic state n, as before.

Note that if vVe e Ve and xe =x ~x Eq. (4.295)

reduces to:

V Vn + V0(i )-X~ (VI -V2) ,Hz (4.299)

Here v and v0 is still defined by Eq. (4.298). Usually the difference

between vrn and v'n is extremely small even if ye V . and no great

err~or is made if we set v Vm

In contrast to the sharp selection rules for allowed changes in

the rotational quantum number J in intervibrational transitions) no gen-

eral selectlon rules can be formulated for allowed changes in the vibrational

quantun, number v in interelectronic transitions. However the Franck-Condon

*Herz.berg (Ref. 2) uses the symbols we ( (y/c), cm, and we~ x xv/)

cm, in his tables.
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principle may be applied to simplify matters, as illustrated in Figures0
4-17 and 4-18. According to this principle, if the molecular equilibrium

distance r for the molecular potential curve of the lower electronic statee
n

equals that of the upper electronic state re , transitions with v = vm
m

will be highly favored. In fact the probability or ratio of the v vn m

transitions to all transitions v 4 v and v = v is given in this casen in n in

by (Ref. 42):

I(vn = m) e V
mn

p(vn v m) = n (4.300)
n, in (vm v ) 2 v + v)

v n m
n

For most molecules v differs only by some 10 to 50 percent
e m

from v Even if v = - v ,the probability or fraction of v = ve e 2 e n rn
n m n

transitions equals 0.9426 according to (4.300). Thus for electronic mole-

cular transitions with r = r , we have for all practical purposes the
e e

n m
selection rule v =v or Av 0 .

n m

For cases that. r - re 0, we get two preferred Av's according
m n

to the Franck-Condnn principle, as illustrated in Figure 4-19. To obtain

analytical values, .4e shall assume the "Morse potential" shown in Figure

4-20 for the molecular potential energy (Ref. 16):

2
( S.-re(s cm"1 (4.301)

Ui - exp- es-, c

or:

VV = ~ I -exp-0 (s.-r) , Hz (4.302)
V. i e }
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UI (a) U (b) U 0

B

C ýF -DB C

A A 5 A s

FIGURE 4-17. POTENTIAL CURVES EXPLAINING THE INTENSITY DISTRIBUTION
IN ABSORPTION ACCORDING TO THE FRANCK-CONDON PRINCIPLE. In (c), AC
gives the energy of the dissociation limit, EF the dissociation
energy of the ground state, and DE the excitation energy of the
dissociation products (after Ref. 2).

(a)

FIGURE 4-18. THREE TYPICAL CASES OF INTENSITY DIS~TRIBUJTION IN
ABSORPTION BAND SERIES (SCHEMATIC). For the sake of simplicity, the
bands are drawn with the same separations in the three cases.
Naturally, these cases would be observed in different band systems,
which would In general not have the same band separations (after

Ref. 2).
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Y 7 ~~~Y~~W W7 -.ý-T, ~7~f~-

VI

C)

A - .

S

FIGURE ,-t19. rOTENTIAL CURVES EXPLAINING THE INTENSITY DISTRIBLTION
IN 0,hISSION ACCORDING TO THE FRANCK-CONDON PRINCIPLE (after Ref. 2).

S(cc':) ,

40.000 j-
13... ... ....... :..........-': -... . : A. A __:_-_,T

12r-I7
-9 _ _ -_ • _____

20,000 -o I

10,000 2

0.5 1.0 1.5 2.0 2.5 S O(10 Cm)

FIGURE 4-20. POTENTIAL CURVE OF THE H2 GROUND STATE WITH VIBRATIONAL
LEVELS AND CONTINUOUS TERM SPECTRUM. The full curve is drawn accord-
ing to Rydberg's data. The broken curve is a Morse curve. The
continuous term spectrum, above v = 14, is indicated by vertical
hatching. The vibrational levels are drawn up to the potential curve,
'hat is, their end points correspond to the classical turning points
of the vibration. It must be remembered that in quantum theory these
sharp turnin points are replaced by broad maxima of the probability
amplitude ( after Ref. 2).
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) 0 The subscript i in (4.301) and (4.302) refers to the electronic level i,

that is for each elect,.7-nic level i, a different Morse potential with dif-

ferent.values of the three constants De j , and r exists. These

constants are defined by:

D Molecular dissociation constant for electronic

level i, cmi, tabulated for different molecules

in Herzberg's tables (Ref. 2).

Vd c D Hz (4.303)
d. e.! I

r = Equilibrium distance of vibrating partners Ine. electronic state i, cm, tabulated by Herzberg

for different molecules (Ref. 2).

2 T T 14A S 11/ 2

AS c (4.304)
hv c

Here:

MA MB (3

MAB MA + M5  gins (4.305)

MA , MB = Mass of vibrating partners A and B, gms, of the

two atoms making up the diatomic molecule.

From (4.304) we see that conversely, the fundamental vibrational

frequency ve Is related to the Morse constants by (Ref. 16):
I

= AB... . , Hz (4.306)

" 7.284



Similarly, the anharmonic constant xe can be shown to be related to the

Morse constants by (Ref. 16):

X -(4.307)

e. e.
I e.

Herzberg (Ref. 2), has tabulated values of we v c ,D ,and r fore e . e. e.

various molecules, and thus the Morse constants for these molecules can be
directly obtained (.is gotten via (4.304)).

From Eqs. (4.302) and (4.285), we can calculate analytically the

two v values (which we shall label v and v+) of the lower electronic state

(levels FE and CD in Figure 4.20) corsodn oagvnvlevmof the

upper electronic state:

4 v x V
v v +-v e v

(v~ (4.308)

and:

+ (+

v~ + (4.309)
n m 2 2 Ve

Here:
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© Y wn ,-~ ,-~'W ' ) ,z

F ( 12

while vv is given by Eq. (4.286) and the parameter Ynis given by:
m + vm

=V Vep- rH (4.311)

The parameter •i was defined in Eq. (4.304).

The above expressions were developed for emission m- n. For

absorption n -. md the same expressions (4.308) through (4.312) apply with

(-J) subscripts m and n interchanged.

The values vn and vn that one calculates from (4.308) and (4.309)

F I

- +

would not be exact integers. The precise quantum states v and v to whichn n

the molecule would relax would be those with integers nearest the values of
v and vn calculated from (4.308) and (4.309). Since we are interested in
v n

+vas calculated from (4.308) and (4.309) in the following. Note that the

n

vn vm case is automatically included in these expressions.

Returning to our development of an expression for eVmnAn)

we must now substitute an explicit expression for vm = Vm(V-Vo) in Eq. (4.294)

based on Eq. (4.295) and Eqs. (4.308) through (4.312). Since we have two
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!:,

possible emitted photons for each value of v each of which has 50

percent chance of being emitted, we can write (4.294) in the form:

hV- 

+
0.5 exp-( ) 0.5 exp-- 0

-e(V)Vmn AVmn) Z/ + Z/ + Hz- (4.313)geV•m'~m)= IAV AV+

v m sp v m sp

Here v and v are the vibrational frequencies in the upper electronic
v vm m

state m giving rise to lower electronic states n with vibrational frequencies

V and v n That is v = v(v) and v+ v (v+ ) Also therefore
n n m m n m m n

v V v- and v+ = v(v+), where v=v- and v =v+ are the two frequencies
m m m m

photons emitted in the v v- and v - v+ transitions, whichof hephtos mite i te m n m n

according to Eq. (4.295) are given by:

VV v - Vv Hz, (4.314)
m n

+ +

'. V V +V V Hz (4.315)'• V= mn - vv
m n

The main frequency difference vmn in (4.314) and (4.315) is actually vmn but
mI

no great error results if we set Vmn v as remarked earlier. The param-

eter was defined by (4.285). The paramters A, = Av(v ) and
vmsp sp vm m

AVsp = AV (vN ) in Eq. (4.313) are the differential frequency spacingssp sp v. m + tastos

(defined by Eq. (4.293)) for the vm - vn and the vm - v transitions.
n.

Since v and v+ are functions of v via Eqs. (4.310) and
n n m

(4.311), it Is possible to solve for v In terms of vmn and v from (4.314)
m

and (4.315). We have from (4.314):
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0 V

V" mn I I + N exp-0(n rem'r)e
m m L

where:
V
Vy (4.317)
d

m

and from (4.315):

2
- Vn

V d Y Vd I [i {i exp-n(re r)] (4.318)
m m

( To solve for y from Eqs. (4.316) and (4.318), we shall use the following

approximations:

YnI(I I~lY -y NV (4.3 19)

0+ .7) Y n + y r (4.320)

These approximations are quite good since yn has a value close to I almost

always, and y v V << I.
Vm/ dm

With Eqs. (4.319) and (4.320), the two solutions for y become:
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+ 2
d+ nm m n

v 2(d) v Vv+ d Yn exp-2n(r e e

mm n

S dV d - n (r re

dm nd~ 'n'em- e 2

" l + { VVmn+VdYf (l-exp'B (rer)) 21 ( Vdm"Vd Y2 exp-20n (rei-e)r \

VnYexp-20n(re-re)}I-exp-O (r-r )J 2

n nmeM en~l n em en-

(4.321)

9Equation (4.321) can be written in the more compact form:

Vvm Pn - Vq + 2 vp I - lP] Hz (4.322)

V + + I +.1 (V' V Hz (4.323)

where:

Pn n (Y Vem/e)2 exp-2 n(re - r) = t" 2 ' B2n (4.324)

2

vq ~v -v ~I exp-(rn vWVd(IB) HZ (4.325)d qi n(dn n ( e) nf n
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"1 -exp-On(re r) 2
~~~V •" .. • d 2•--V n (Ve/ve)2 exp '20n(e - r ) - I

t B' (I-Bn) 2  B2 (I-B

SP V B I-B) (4.326)
-d I t2 B2  n d n n nn nn

Here we abbreviate for convenience:

V/ (4.327)•n e n/\ er

Bn exp-O n(r- r e (4.328)n nem en,

Using Eqs. (4.332) and (4.323) we can now evaluate Av+ and
sp

ALj p defined by Eq. (4,.293) :

= ( / + + Hz (4.329)

AV = (Ve/P)[I- 2{i + (V1V)/V}'/2] Hz (4.330)

Now as the value of v varies, the values taken on by vv andm

vv can never become negative or imaginary, nor can either of the twom

exponential teerms in expression (4.313) become negative, meaning that

AV;p and Av must both be positive always. By inspection fo Eqs. (4.322)

and (4.323)p and Eqs. (4.329) and (4.330), we then find that v can only

range over the limits:

290



0. For VV (vq-Vp) V V ; (4.331)

For v (V+3v) v (4.332)
vq p

Thus according to (4.332) and (4.332), for (v q-V) p v q (43V p) only
+

"-v vn transitions are possible.

Substituting Eqs. (4.332), (4.323), (4.329), and.(4.330) into

Eq. (4.313).with the restrictions (4.332) and (4.332) yields next:

(vvAv) = Z_ AV1 q p H(V-Vq-3Vp) 1

exp- v 2 V (I F - PV)!/Vp + 1+ 2
kT/(hPn IVq\

V+ p
VVpq

v v +2v (I + i(- /
exp- kT/qhP P Iq-K ! - (4.333)

Here H(x) is the Heaviside unit step function definied before (see

Eq. (4.149a).

To find the normalization constant Z' we must integrate

Eq. (4.333) over v:
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p VF (j'- +2v,(,- 1+)v)
=i n dv exp- q)V

V 2vJ
Vm° e" " kT/hp° n,

em qVV+3Vp

wV( 2 r dv exp- P(V-Vq+2Vp(I+ F+(Vq)/p
ii - +V kT/hp n

Sq q-p

2kT T [epm (
( 1+ - hv [e p- (+P~ kT hx p v-

Here A is the contribution to the integration from the factors

±2 1 + (v-vq),/v-. It is given by:

±21/2 1/2/2

[- "Terfy kT ) -hI+ err . 1=0

(4.335)

The function erf(x) in the above is the error function. Using (4.324)

and (4.326)) Z' can be expressed in terms of the g and B defined in
Vn n nn

(4.327) and (4.328);

L i ... . . .n n n-= Tk exp{ 292 B -kr (4.336
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7.1 7ý7'11 71-11

The band-spread AV is again obtained by setting Av
rmn mn

= (VVe'nn ,AV The result with the aid of (4.333) and (4.33i4)

is:

U/hp n
A mn -1/2

Inq+ (++ 2+( 
Vq)/Vp) )V

epkT/(hp) H
n

(4.3,37)

or in terms of the and B parameters:
n n

AV+2 I 1  exp X2A1,(A1,+2B,1  Hz

(4.338)

Here we abbreviate for convenience:

- ~B 'n o ( I-B) (4.339)

An = (I~g2)B2}I/2 (4.440)

Rewriting next (4.333), using expressions (4.337) and (4.338)

yields finally:
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C) I [exp- 1 {-2(i+Cv-v )\pj
ge mnV" mn) -17F

Ln mn

{H(VVq~3p)} +2 (I+(v
exp-(-2 kTv- -v

. {ex+(f~Vji ~ 1)j H(v-v +v} 1 Hz

( 4. 34 1 a)
or in terms of the parameters ,B ,x~ and A:n nn n

ge(V~Vm mn x~ .. B)~j [IB BI

(xp 1-2BBnn r1 A\2(A+±ý(2vn B ex2) 2B2(x 2,dn n nn~
e+ / mnIn VI+ B/

mn n n

h 
X2

ex-2 kHT- ,+- (BiV PIvdj mn Hz' )
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The dimensional shape function be(VvmnAV) AVmn ge(v, ,Avn) is

of course also given by (4.341) with AV removed from the denominator.mnL

Equation (4.341) STves the envelope of the vibronic transition

band-system of a diatomic molecule. To obtain the vibrational band detaiis

of a vibronic band-system, we can v rite analogously to the rovibrational

case (see the discussion surrounding Eq. (4.156)):

8_-

(vV AV b (V AV 6 S (v Av Hz (4.342)
mn

Here be(vs vmn,Av mn) is the same function as be (VVmn ,AVmn) except that
v is no longer continuous and has only the discrete values vs , that is:

sI
S--

be(s,vmn,A Am) = exp- -m)X

~12 A2 +inn s;m).H~svn m

(I-•nI + 2n ( n

n n

+ e Bn mn IA 'n+ I + 2B /A

nn n nn n -V V\

AA + mn LV-Vnn", (1+(3-.D-

+ I+ 2B nn X exp+ VBX V'-'')A+n V2• / i••

kT n<' X2 V Sm nn

H+ n B (s +g) -d Vd )

" (4.343)-;
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The discrete-valued variable v~ is given by:

Vs =V + (V Vm V vv)- (Xe Ve ' - Xe Ve 2~) Hz, (4.344a)
m n m nn

where:

v0 Ve ( xe )Hz, (4.334b)

and:

vm =0,1,2j, 3,........, (4.344c)

v =0, 1) 2, 3,....., (4.344d)
n

while 8v s is the spacing between successive vibrational bands in the

vibronic band-system, given by:

p I'

88 Vsv (5 , 'An Hz, H (4.345a)
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since the integral in (4.345a) is unity, while in the case of overlapping

bands (Av << AV we have:
s mn

""'= AV~n ,Hz (4.345d)

(AVv << Aticae

since the integral in (4.Z45a) equals (AVs/AVn in thiscScase

The function 9v(vNvs, ) in (4.344) and (4.345a) is the

vibrational band contour functioio given in section 4.7 for various types

of molecules, the only difference being that v is substituted for Vmn in

the expressions given there, and AvV is the spread of the individual vibra-mn

tional band which is labeled AVmn in section 4.7. The parameter AVmn in this

section refers of course to the spread of the vibronic band-system.

t L 0
To get finally the rovibronic spectral detail, showing individual

rotational lines in each vibrational band of the vibronic band-system, we

simply substitute grov(v vsAv~n) for v that is:

r(\m= ge(Vs)Vmn)A~mn) gv(JVs,AV) gj.(v)vsjAvJ) 8vs 8vj• Hz-

(4.346)

Heregrov(V'vs AvV 9= (JV Av~n) gj(V'VsjhAvJ) 6 Vj as discussed inro Vmn vs n m

section 4.7. The v are given by the same formulas as the expressions for
sj

v in section 4.7 except that Vmn in those equations must be replaced by

vs. Of course J = 0, I, 2,........ and Avj is the pressure- or temperature-

broadened spread of an individual rotational line, whicle 6v is the spacing

between rotational lines if they are separated or equal to Eqs. (4.155d),
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(j) (4.180~b)., (4. 185b), (4.280b), or (4.280c) whichever is applicable, if

adjacent rotational lines overlap. Note from thesu relations that in

case of substantial line overlap, 8v~ AVJ Explicit expressions for

9 (J'V )AV~~ and gj(v.v ~AV ) were given in section 4.7 and sections

4.5, 4.4., and 4.5, respectively.

[4.8.2 Polyatomic Vibrators

For a polyatonic molecule which possesses not one, but several

normal vibrations at :- 1, 2, 3, etc., we must modify Eqs. (4.292) and

(4.294) for the diatomic molecule to:

V-:

Glc(v) oCvJib ~x~vmh )

m m m

and:

a am SP hv

mm
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The photon emission frequencies are similarly to (4.295) given

S~by:

V Vm + V m v n v 0 vv - x V• v2 Hz (4.350)m = nm l n m m °m n n (in

where we make -*he approximation v (I-x V v . Equations (4.301) through

(4.3 12) which apply for the diatomic molecule also hold for polyatomic

molecules, except that all subscripts e must be replaced by subscripts ca.

Thus for each normal vibration a of a polyatomic molecule, there is a set

of relations (4.301) through (4.312). In addition to changing e to C, the

reduced mass M AB used in Eqs. (4.304) and (4.306) must be replaced by MCI

and Eq. (4.305) no longer holds. Instead of Eq. (4.305), Ma must be cal-

culated via the expressions given in Appendices A and B for the various

types of polyatomic molecules. Tables 3-7 through 3-10 gave values of M

for a number of polyatomic molecules. Estimated values of D and thus

V d may be obtained from Appendix C.

Values for the parameter r , that is the mean separation of the

P, vibrating components of a normal vibration cr in a polyatomic molecule are

diff.cult to obtain, particularly values of r and r of two different
01m n

electronic states m and n. Actually we only need to know the difference:

Ar r - r , cm, (4.351)
•mn m n

in the expressions for the band-series contour functions. For most molecules:

0.01 tr 0. 1 (4.352)

r
•m
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and in many cases r > r if m is a higher electronic level than n.0m n
However r < r also occurs frequently. Herzberg (Ref. II) lists a few

=n °m

values of rc," f)r some selected molecules in his reference tables.

The equations leading to an expression for ge(VVmn AVmn)

developed in subsection (4.8.1) for diatomic molecules, can be directly

taken over for polyatomic molecules except that the weighting function

w Cv ) must now also be taken into account and summations over 01 must be
m om

carried out. Thus instead of (4.313) we get for a polyatomic molecule:

V. kT +

, exp-.•v -m exp- v
e mniAVm + +

.n 2• Z AV 'Z' Av1 1s pa at s paI

ofm m Om Sm m)++

, >K hvm )(<QxV :I

_____ av~ ___Q

I

m mY Vg M

_+ "x exp- I
Of m 2) \OYm 3) ,,,5)

+ +.. m + z"

2z Ev ZI (4.353)A

aZ m m ms i
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)Here we added the subscript a on v and v to indicate that each
v vm m

normal vibration • has its own set of values for these parameters.

The summation ao in Eq. (4.353) is over non-degenerate normal

vibrations (d = ), 2ot is over doubly-degenerate normal vibrations (d.= 2),

and 3a is over triply-degenerate normal vibrations (d = 3), while we set:

V" = (v vc "-" ' 434

+ 2

V V 2 (4.355)

similarly to Eqs. (4.308) and (4.309) for the diatomic vibrator. Equation

L•) (3.91) was also used in (4.353) to get explicit values of the weight w

+
in terms of v 01V and v tVm for the three types of degenerate vibrations.

M m
The normalizing factors Z' are further labeled with a pre-superscript I,v

m

2, or 3 for non-, doubly-, or triply-degenerate normal vibrations and sub-

script a is added in place of subscript v (which is simply dropped since it

is already clear that we are dealing with vibrational factors) to indicate

that there is a different Z' factor for each normal vibration jX.
am

Equations (4.314) through (4.332) for the diatomic molecule also

apply to each normal vibration of the polyatomic molecule except for the

addition or substitution of subscript ot for subscript e. Equation (4.333)

for the diatcmic molecule, transforms next to the following expression for

a p, lyatomic molecule.
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